उच्छ

सील

40

पर्यवेक्षकांच्या

Malarashva Engineering Sewices Prelim.

Gram-2011 2041 Code: AF

Ot 15/1/2012—уханувана вина 107609 **BOOKLET No.**

> प्रश्नपुस्तिका स्थापत्य अभियांत्रिकी

एकूण प्रश्न : 100

Code: ARM

एक्ण गुण : 100

स्चना

(1) <u>सदर प्रश्नपुस्तिकेत 100 अनिवार्य प्रश्न आहेत.</u> उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्याची, असा तसेच अन्य काही दोष आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकडून लगेच बदलून घ्यावी.

(2) आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसरता बॉलपेनने लिहावा.

वेळ : 2 (दोन) तास

- (3) वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे न विसरता नमूद करावा.
- (4) या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असून त्याना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपत्रिकेवरील सूचनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नमूद करावा. अशा प्रकारे उत्तरपत्रिकेवर उत्तरक्रमांक नमूद करताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नयः
- (5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण **एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न** घालविता पढील प्रश्नाकडे बळावे. अशा प्रकार शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- (6) उत्तरपत्रिकेत एकदा नमूद कलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोड्न नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
- (7) प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मृल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच ''उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची अचूक उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील".

ताकीद

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम–82'' यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित् केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनधिकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदांपैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदांपैकी असली तरीही अशा व्यक्तीविरुद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यवती शिक्षेस पात्र होईल.

पुढील सूचना प्रश्नपुस्तिकेच्या अंतिम पृष्ठावर पहा

1.
$$\lim_{x \to 0} \left(\frac{2x+1}{x+1} \right)^{\frac{1}{x}}$$
 is

(1) one

(2) e

(3) does not exist

(4) none of the above

2. If a matrix
$$A = \begin{bmatrix} 1 & -2 & 3 \\ 0 & -1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$
 then the Eigen values of $A^2 + A^{-1} + 3$ adj A are

- (1) 1, 3, 1
- (2) -1, 3, 1
- **(3)** −1, −3, 1
- (4) -1, 3, -1

3. Laplace transform of
$$\frac{d}{dt} \left(\frac{\sin t}{t} \right)$$
 is

(1) $1 - s \cot^{-1} s$

(2) $1 - s tan^{-1} s$

(3) $s \cot^{-1} s - 1$

(4) $s tan^{-1} s - 1$

4. If
$$\vec{F} = (xy^2)i + (yz^2)j + (zx^2)k$$
 and S is the surface of the sphere $x^2 + y^2 + z^2 = 4$ then the value of $\vec{F} \cdot d\vec{s}$ is

- (1) $\frac{16\pi}{5}$
- (2) $\frac{128\pi}{5}$
- (3) $\frac{64\pi}{5}$
- (4) $\frac{32\pi}{5}$

5. General solution of wave equation
$$\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$$
 s.t. $y(0, t) = 0 = y(l, t)$ is

(1)
$$\sum_{n=1}^{\infty} \left[A_n \cos \frac{n\pi cx}{l} + B_n \sin \frac{n\pi xc}{l} \right] \sin \frac{n\pi t}{l}$$

(2)
$$\sum_{n=1}^{\infty} \left[A_n \cos \frac{n\pi ct}{l} + B_n \sin \frac{n\pi ct}{l} \right] \sin \frac{n\pi x}{l}$$

(3)
$$\sum_{n=1}^{\infty} \left[A_n \cos \frac{n\pi t}{I} + B_n \sin \frac{n\pi t}{I} \right] e^{\frac{n\pi cx}{I}}$$

(4)
$$\sum_{n=1}^{\infty} A_n \sin \frac{n\pi x}{I} e^{-e^2 n^2 \pi^2 t/I^2}$$

6... If A is 37×37 matrix with $A^2 = 1$ then rank of A is

(1) 0

(3) 37

(4) such a matrix is not possible

7. If \vec{a} is a non-zero constant vector with magnitude $\vec{a} \neq \frac{1}{\sqrt{2}}$ and $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ then $\operatorname{div}\left[\overline{a}\times(\overline{r}\times\overline{a})\right]$ is

- (1) 0
- (2) 1
- $(3) 2a^2$

8. The velocity 'V' of particle at distance 'D' from a point on its path given by below table

D (in metre) 0

V (m/sec)

- 10 58
- 20

64

- 40
 - 50
 - 61 52 38

65 The time taken to travel 60 meters by using Simpson's one third rule is

30

(1) 1.0445166 sec

(2) 1.0635166 sec

60

(3) 1.0534166 sec

(4) 1.0746166 sec

9. If bulk modulus and modulus of rigidity for a material are K and G respectively, then what will be Poisson's ratio

- (1) $\frac{3K + 4G}{6K + 4G}$ (2) $\frac{3K 4G}{6K + 4G}$ (3) $\frac{3K 2G}{6K + 2G}$
- (4) $\frac{3K + 2G}{6K 2G}$

10. A bar of steel (E = 2.1×10^6 kg/cm²) 70 cm long varies in its cross section with 2.5 cm dia for the first 20 cm, 2 cm dia for next 30 cm and 1.5 cm dia for the rest of the length. Find the elongation if the bar is subjected to a tensile load of 15 tonnes.

- (1) 0.118 cms
- (2) 0.25 cms
- (3) 0.178 cms
- (4) 0.354 cms

11. A solid circular shaft of diameter 100 mm is subjected to a torque of 25 kNm. The angle of twist over a length of 3 m is observed to be 0.09 rad. The modulus of rigidity of material is

 $(1) 7.64 \times 10^{-5} \text{ N/mm}^2$

(2) $8.49 \times 10^4 \text{ N/mm}^2$

(3) 2.1×10⁵ N/mm²

(4) $6.74 \times 10^4 \text{ N/mm}^2$

12. A propped cantilever of span 'L' is carrying a point load 'P' acting at midspan. The plastic moment of the section is Mp. The magnitude of collapse load is

- (1) 6 Mp/L
- (2) 8 Mp/L
- (3) 2 Mp/L
- (4) 4 Mp/L

13.	Find the Euler's crippling to external diameter and 2.5 n	_		
			-) 21.4 9 kN
14.	A bar of 400 mm length and tensile load of 50 kN, assu			•
	(1) 2.481 mm	(2)	3.203 mm	
	(3) 0.318 mm	(4)	0.187 mm	
				2
15.	Reaction at a prop in a prop entire span 'L' is equal to	pped cantilever wh	en it is subjected to	UDL of 'w/m' over a
	(1) $\frac{3wL}{8}$ (2) $\frac{5}{2}$	<u>wL</u> (3)	wL ² /8 (4)
16.	The curved geometry of ma	asonry arches allov	vs its load carrying	capability only in the
	(1) Compressive forces	(2)	Tensile forces	
	(3) Bending forces	(4)	Torsional forces	O.
17.	The slope of cantilever be load 'P' applied at free end		, at the free end	due to concentrated
	(1) PL ² /El (2) Pl	$L^2/2 EI$ (3)	PL ³ /3 El (4) PL ³ /2 El
18.	In moment distribution me meeting at a joint is always		distribution factors	for all the members
	(1) Equal to zero	(2)	Equal to one	
	(3) Greater than one	(4)	Smaller than one	
19.	If the Young's Modulus are respectively. Find the Bulk		of a material is 2×	10 ⁶ kg/cm ² and 0.25
	(1) $\frac{6}{5} \times 10^6 \text{ kg/cm}^2$	(2)	$\frac{3}{4} \times 10^6 \text{ kg/cm}^2$	
	(3) $\frac{5}{6} \times 10^6 \text{ kg/cm}^2$	(4)	4/3×10 ⁶ kg/cm ²	
20.	A continuous beam ABCDI Hinge 'F' is provided along	•	• •	=
	(1) 4 (2) 1	(3)	_) 3

21.	Shear stress at the centre of shaft having 200 mm radius and subjected to twisting moment of 300 N.m. is
	(1) 0.19 N/mm ² (2) Zero (3) 0.38 N/mm ² (4) 0.095 N/mm ²
22.	Using limit state method, find the area of steel required for a beam 300 mm $ imes$ 600 mm
	effective, if concrete M ₂₀ and steel Fe 415 are used
	(1) 1019 mm ² (2) 1728 mm ² (3) 1256 mm ² (4) 958 mm ²
23.	For a rectangular beam section the limiting value of $\frac{xu, max}{d} = 0.479$. However, for
	the beam data $xu_d = 0.504$. Following statement is true for the beam
	(1) The beam is under-reinforced and failure shall be with warning
	(2) The beam is over-reinforced and failure shall be sudden and without warning
	(3) The beam is under-reinforced and failure shall be sudden and without warning
	(4) The beam is balanced section
24.	Flexural strength of M ₂₅ concrete is
	(1) 3.00 N/mm ² (2) 3.5 N/mm ² (3) 5.00 N/mm ² (4) 17.5 N/mm ²
25 .	The sudden failure of a prestressed member without any warning is generally due to
	(1) Fracture of steel in compression zone
	(2) Fracture of steel in tension zone
	(3) Crushing of concrete
	(4) Web shear cracks
26.	For gravity retaining wall earth pressure exerted by back-fill is resisted by
	(1) Bending action of stem and bottom slab
	(2) Tension in the counterfort
	(3) Dead weight of wall
	(4) None of the above
27.	A concrete rectangular beam of size 180 mm × 300 mm is prestressed with a straight
27.	tendon to an effective force of 200 KN at an eccentricity of 50 mm below the centroidal
27.	tendon to an effective force of 200 KN at an eccentricity of 50 mm below the centroidal axis. The stresses at top and bottom fibre of structure are
27.	tendon to an effective force of 200 KN at an eccentricity of 50 mm below the centroidal
27.	tendon to an effective force of 200 KN at an eccentricity of 50 mm below the centroidal axis. The stresses at top and bottom fibre of structure are (1) 3.70 N/mm² (Compression) (2) 3.70 N/mm² (Compression)

28.		end and flushed with each other and are	
	joined by means of cover plates on either (1) Zig-Zag rivet lap joint (2)	(2) Chain riveted lap joint	
		(4) Flushed rivet joint	
29.	The shape factor for a rectangular beam of	of width 100 mm and depth 300 mm is	
	· -	(3) 1.00 (4) 1.25	
30.	The ratio of plastic moment to yield mome	ent is called as	_
	(1) Modulus of rupture ((2) Proof resilience	
	(3) Plastic section modulus ((4) Shape factor	
31.	held in position at both ends and restraine		_
	(1) 1.00 L (2) 0.80 L ((3) 0.65 L (4) 1.5 L	
32.	stress $f_y = 250$ MPa. The plastic section m (1) 538.91×10^3 mm ³	of 148.2 kN m. Assume $\gamma_{mo} = 1.10$ and yield modulus Z_p for the section is (2) $652.08 \times 10^3 \text{ mm}^3$ (4) $40.755 \times 10^3 \text{ mm}^3$	
33.	What is the coefficient for calculating net connected to Gusset plate through its flant (1) $\frac{3A_1}{3A_1 + A_2}$ (2) $\frac{5A_1}{5A_1 + A_2}$ (# A	
34.	Residual soil is a soil (1) Which stays at the place of its formation (2) Which deposits at a place away from (3) Both 1 and 2 (4) Neither 1 nor 2	place of its origin	
35.	For compacted soil, maximum dry density (1) Minimum water content (2)	y is obtained corresponding to (2) Optimum water content	

(3) Maximum water content

(4) None of the above

36.	A silty soil gives positive reaction in		
	(1) Dry strength test	(2)	Toughness test
	(3) Dilatancy test	(4)	None of the above
37.	In a cohesionless soil, quick sand cond	dition o	occurs when effective pressure is
	(1) High (2) Zero	(3)	Less (4) None of the above
38.	The seismic refraction methods cannot	l be us	sed if the wave velocity is
	(1) Greater than the velocity in the upp	er lay	er (C)
	(2) Less than the velocity in the lower	layer	
	(3) More than four times		
	(4) More than thrice		· oth
39.	Submergence of foundation due to rise	of wa	iter table causes
	(1) Increase in bearing capacity	(2)	Decrease in bearing capacity
	(3) No change in bearing capacity	(4)	None of the above
40.	The radius of friction circle is equal to		1,000
	(1) R sin φ (2) R cos φ	(3)	Rtan o (4) Ro
41.	To resist heavy lateral loads which typ	e of pi	les are used ?
	(1) Friction and bearing piles	(2)	Displacement piles
	(3) Under reamed piles	(4)	Batter piles
42.	A shallow foundation is defined as fou	ndatio	n which has
	(1) Depth less than 0.6 m	(2)	Depth less than its width
	(3) Depth less than 1 m	(4)	None of the above
43.	Allowable soil pressure for foundation	in coh	nesive soils is generally controlled by
	(<mark>1) Settlem</mark> ents	(2)	Bearing capacity
	(3) Both 1 and 2	(4)	Neither 1 nor 2
44.	Sample procured in a sandy soil by sp	lit spo	on sampler is
	(1) Disturbed sample	(2)	Undisturbed sample
	(3) Representative sample	(4)	Wash sample

45.	Slip circle method is use	ed for determination	n o	f	
	(1) Stability of finite slop	oe (2	2)	Stability of infinite s	lope
	(3) Stability of finite and	l infinite slope (4	4)	None of the above	
46.	The precompression me	ethod is useful for c	On	npacting	-
	(1) Silts (2)	Organic soils (3	3)	Clays (4)	All the above
47.	In situ vane shear test is	used to measure s	she	earing strength of	
	(1) Very soft and sensit	ive clays (2	2)	Stiff and fissured cl	ays
	(3) Sandy soils	(4	4)	All of the above	-)
48.	Pile foundation is one of	the type of			
	(1) Shallow foundation	(2	2)	Raft foundation	
	(3) Deep foundation	(4	4)	Machine foundation	
49.	Dynamic Viscosity (μ) h	nas the dimensions	s a	s	.90
	(1) MLT^{-2} (2)	$ML^{-1}T^{-1}$ (3	3)	$ML^{-1}T^{-2}$ (4)	M ⁻¹ L ⁻¹ T ⁻¹
50.	In a turbulent flow in a p	ipe, the shear stres	ss	is	
	(1) Maximum at the cen	tre			3
	(2) Maximum at the bou	ındary and decreas	ses	s lin <mark>e</mark> arly to ze <mark>ro a</mark> t tl	he centre
	(3) Maximum at the bou	undary and decreas	ses	s logarithmically tow	ards the centre
	(4) Maximum at a finite	distance from the t) O (undary	
51.	The critical depth is the	depth of flow at wh	nicl	1	
	(1) Discharge is maxim	u <mark>m</mark> (2	2)	Reynold number is	unity
	(3) The specific energy	is minimum (4	4)	Perimeter is minimu	um
52 .	Boundary layer on a flat	plate is called lam	nina	ar boundary layer if	
	(1) Reynold number is l	less than 2000 (2	2)	Reynold number is	less than 4000
	(3) Reynold number is I	ess than 5×10^5 (4	4)	None of the above	
		1			
53.	The net or effective hear	d at the turbine is			
	(1) The sum of gross he	ead plus the head l	os	s in the penstock	
	(2) Sum of gross head	pl <mark>us head loss in t</mark> h	1e	penstock and veloci	ty head at turbine exit
	(3) The difference betw	een gross head mi	inu	is head loss in pens	tock
	(4) The difference betw at turbine exit	een gross head mi	inu	is head loss in pens	tock and velocity head

U4.	1116	Samily in water						
	(1)	Reduces the ev	apor	ation	(2)	Increases the e	vapo	oration
	(3)	Does not affect	evap	oration	(4)	None of the abo	ve	
55.	pea	k flow of 40 m ³ /s chment will have	. The	e catchment area eak flow in m³/s	is 1	80 km ² . The 6-h		ase of 100 h and a hydrograph for this
56.	the (1)	mass curve aga	iin. T vas na	his implies that ot full at the begi		-	cun	ve did not intersect
	(3)	The demand ca	ın no	•		v as the res <mark>er</mark> voi	r will	not refill
57.	(1)	Unit depth of ru	noff	hydrograph refe	(2)	the Unit duration of Unit area of the		
58.	of c pun A = B = C = D =	concentration of cose of design of 35 mm/h for 15 45 mm/h for 10 10 mm/h for 60 15 mm/h for 25 greatest peak i	25 r of dra minu minu minu minu	minutes. Following in age utes utes utes utes utes utes utes ute	ng fo	our rainfall patte		rger side, has time are considered for
59.	cuto	ording to Khosi off is zero		heory, t <mark>h</mark> e exit g		ent in the absen		f a downstream very large
60.	dan	eccentricity of n is given as e = 6B		esultant permitte e = 6/B		either side of co	entre (4)	of base in gravity None of the above
		ROUGH WORK						

- 61. The spillway crest is located at
 - (1) Maximum water level of dam
- (2) Normal pool level

(3) Crest of dam

(4) None of the above

- 62. In leaching process
 - (1) Land is flooded with adequate depth of water
 - (2) Land is provided with adequate drainage
 - (3) Land is provided with salt layer
 - (4) None of the above

- 63. Ozone layer in the stratosphere is being destroyed by
 - (1) Sulphur dioxide

- (2) Carbon dioxide
- (3) Photochemical oxidants
- (4) Chlorofluro carbon
- **64.** The surface area of a clarifier for 0.43 m³/s design flow, using surface overflow rate of 40 m³/m².d is
 - (1) 928.80 m²
- (2) 930.23 m²
- (3) 1720 m²
- (4) 172 m²
- 65. Among the following, what is the best suitable range of pH for Ferrous Sulphate (Fe SO₄.7H₂O) as a coagulant
 - (1) 5.5 -8.0
- (2) 5.5 11.0
- (3) 4.5-9.5
- (4) 8.5 11.0
- 66. The most desirable pH range for drinking water as per BIS is
 - (1) Less than 7.00

(2) More than 7.00

(3) 7.00 to 8.50

- (4) 6.00 to 7.00
- 67. Acid rain is caused by increase in the atmospheric concentration of
 - (1) Ozone and dust
 - (2) Sulphur dioxide (SO₂) and nitrogen dioxide (NO₂)
 - (3) Sulphur trioxide (SO₃) and carbon monoxide (CO)
 - (4) Carbon dioxide (CO₂) and oxygen (O₂)
- 68. Speed of paddles rotation in mechanical flocculator ranges between
 - (1) 2-3 rpm
- (2) 5-10 rpm
- (3) 10-20 rpm
- (4) 100-200 rpm

SPACE FOR ROUGH WORK

P.T.O.

69.	The volumetric organic loading and aer	ation	period of aeration tank, having influent
	BOD ₅ of 200 mg/L, Food Microorgan isms	n)ratio	0.2 and mixed liquor suspended solids
	concentration 3000 mg/L, respectively a	are	
	(1) 0.6 Kg BOD ₅ /m ³ .d and 4 hrs.	(2)	0.4 Kg BOD ₅ /m ³ .d and 8 hrs.
	(3) 1.2 Kg BOD ₅ /m ³ .d and 8 hrs.	(4)	0.6 Kg BOD ₅ /m ³ .d and 8 hrs.
70.	The short circuiting occurring in sedime	ntatio	on tank is represented by
	(1) Surface loading	(2)	Recirculation ratio
	(3) Detention time	(4)	Displacement efficiency
71.	The important gaseous pollutants contri	ibutir	ng to acid rain are
	(1) SO_2 and NO_x (2) NO_x and O_3	(3)	CO ₂ and H ₂ S (4) None of these
72.	The factors responsible for self purification down stream of point of disposal are	ation	of a polluted river when it flows on the
	 Dilution and dispersion, sedimentat and turbulence 	ion, d	exidation and reduction, effect of sunlight
	(2) Rainfall and surface runoff		
	(3) Sewage treatment by activated sluc	dge p	rocess
	(4) Evaporation, percolation etc.		
73.	Efficiency of conventional cyclones as range 5-20µ lies between	air p	pollution control device for particle size
	(1) 50 to 80%	(2)	Less than 50%
	(3) 80 to 95%	(4)	95 to 99%
74	The minimum per capita water demand	for d	omestic use as recommended by BIS is.
	(1) 500 Lpcd	(2)	Less than 50 Lpcd
	(3) 135 Lpcd	(4)	1000 Lpcd
75.	The average calorific value of the urbar	n soli	d waste produced in India is about
	(1) 1000 Kcal/Kg (2) 1500 Kcal/Kg	(3)	2000 Kcal/Kg (4) 2500 Kcal/Kg
76.	The ambient air quality standards of nois time are respectively	se in	industrial area during day time and night
	(1) 75 and 70 dB(A) Leq.	(2)	70 to 75 dB(A) Leq.
	(3) 65 to 55 dB(A) Leq.	(4)	55 to 65 dB(A) Leq.
SPACE	E FOR ROUGH WORK		

	Am									
	(1)	Sound	Level M	leter		(2)	Octave E	Band Anal	yser	
	(3)	Tintom	et er			(4)	Cassette	recorder		
78.		per IRC, ids is	maxim	um lir	nit of supe	erelevation	for mixed t	raffic in pla	in and rolli	ng terrain
	(1)	5%		(2)	10%	(3)	7%	(4)	4%	
79.	Bitu		materia	als ar	e commo	only used in	highway	constructi	on becaus	e of their
	(1)	tensile	and cor	mpres	ssion proj	perties			-	
	(2)	binding	and wa	ater p	roofing p	roperties				
	(3)	shears	trength	and I	tensile pr	operties				
	(4)	poud a	nd tensi	ile pro	operties					20
80.		e pressu			_	ckness is de equired Cali				
		2.95%		(2)	5%	(3)	3.95%	(4)	10%	
<u></u> 81.	(1)	2.95%	slope fo	_	5% ulders sh		3.95%	(4)	10%	
<u>8</u> 1.	(1)	2.95% e cross s	-	r sho	ulders sh			33	10%	
 81.	(1) The	2.95% e cross s Steepe	r than th	r sho he cr	ulders sh	ould be	g pavemer	nt	10%	
 81.	(1) The (1) (2)	2.95% e cross s Steepe Flatter	r than th	r sho he cros	ulders shoss slope	ould be of adjoinin	g pavemer pavement	nt	10%	
81.	(1) The (1) (2) (3)	2.95% e cross s Steepe Flatter	r than than the as the c	r sho he cros cros	ulders shoss slope	ould be of adjoinin of adjoining	g pavemer pavement	nt	10%	
81. 82.	(1) The (1) (2) (3) (4) Ma	2.95% e cross s Steepe Flatter Same s None c	r than the than the cas the cas fithe ab	r sho he cros cross s ove	ulders shope as slope of slope of a	ould be of adjoinin of adjoining	g pavement pavement vement	nt ven point c	on a road d	uring one
	(1) The (1) (2) (3) (4) Mahou	2.95% e cross s Steepe Flatter Same s None c	r than the than the as the cafe the ab	r sho he cros cross s ove	ulders shope as slope of slope of a	ould be of adjoining adjoining pa cars that car ay and traff	g pavement pavement vement	nt ven point c	on a road d	uring one
	(1) The (1) (2) (3) (4) Ma hot (1)	2.95% e cross s Steepe Flatter Same s None of	r than the	r sho he cros ross s ove of pas st ide	ulders shope as slope of slope of a	ould be of adjoining adjoining pares that car ay and traff	g pavement pavement vement n pass a giv	ven point ons is know	on a road d	uring one
82.	(1) The (1) (2) (3) (4) Ma hou (1) (3)	2.95% e cross s Steepe Flatter Same s None constitution of the con	r than the than the as the cabit the moderate capacity satily satily	r sho he cros ross s ove of pas st ide	ulders shope as slope of slope of a ssenger of all roadwa	ould be of adjoining adjoining pares that car ay and traff	g pavement pavement vement n pass a given ic condition basic cap all of the	ven point ons is know pacity of trabove	on a road d rn as affic lane	
	(1) The (1) (2) (3) (4) Mahou (1) (3) It is cor	2.95% e cross s Steepe Flatter Same a None constitution of the con	r than the than the as the about the modern the capacity sating to	r sho he cros ross s ove of pas st ide	ulders shope as slope of slope of a ssenger of all roadwa	ould be of adjoining adjoining pa ears that car ay and traff (2) ne (4) esign the h	g pavement pavement vement n pass a given ic condition basic cap all of the	ven point ons is know pacity of trabove	on a road d on as affic lane the traffic	
52.	(1) The (1) (2) (3) (4) Ma hol (1) (3) It is cor (1)	2.95% e cross s Steepe Flatter Same a None of eximum r ur under traffic d probab	r than the than the as the ca f the ab the most lensity le capac ally sati	r sho he cros ross s ove of pas st ide	ulders shope as slope of slope of a ssenger of all roadwa	ould be of adjoining adjoining pa ears that car ay and traff (2) ne (4) esign the h	g pavement pavement rement pass a given condition basic cap all of the ighway fa	ven point ons is know pacity of trabove	on a road d on as affic lane the traffic	
82.	(1) The (1) (2) (3) (4) Ma hol (1) (3) It is cor (1) (3)	2.95% e cross a Steepe Flatter Same a None of eximum r ur under traffic d probab s gener respond Peak h 30th ho	r than the than the as the capacity le capacity ally satisfing to our	r sho he cros ross ross ove of pas st ide	ulders shoss slope of a slope of a senger of a fraffic la	ould be of adjoining adjoining pa ears that car ay and traff (2) ne (4) esign the h	g pavement pavement rement rem	ven point ons is known above cilities for average date	on a road d on as affic lane the traffic	o volume
82.	(1) The (1) (2) (3) (4) Mahou (1) (3) It is corr (1) (3) Nu	2.95% e cross a Steepe Flatter Same a None of eximum r ur under traffic d probab s gener respond Peak h 30th ho	r than the than the as the cafe the moderative decapace ally satisfing to our vehicles	r sho he cros ross ross ove of pas st ide	ulders shoss slope of a slope of a senger of a fraffic la	ould be of adjoining adjoining pa adjoining pa ars that car ay and traff (2) ne (4) esign the h (2) (4) unit length (g pavement pavement rement rem	ven point ons is know pacity of trabove cilities for average day	on a road d on as affic lane the traffic	c volume

85. Optimum signal cycle using Webster's formula is given by

(1)	Co	_	<u>L + 1.5</u>
(1)	0	_	1- Y

(2)
$$C_0 = \frac{1.5L + 5.5}{Y - 1}$$
 (3) $C_0 = \frac{1.5L + 5}{1 - Y}$ (4) $C_0 = \frac{1.5L + 5}{Y - 1}$

3)
$$C_0 = \frac{1.5L + 5}{1 - Y}$$

(4)
$$C_0 = \frac{1.5L + 5}{Y - 1}$$

86. The imaginary line joining the intersection of cross hairs of diaphragm to the optical centre of object glass and its continuation is called as

(1) Axis of telescope

Axis of diaphragm

(4) Line of telescope

The least count of levelling staff is

- (1) 1 mm
- (2) 1 cm
- (3) 5 mm
- (4) 5 cm

88. In a closed theodolite traverse ABCDA, the following latitudes and departures were calculated

Station	N	S	E	W
Α	300.50			200.25
В	200.50		299.05	1
С		298.50	199.50	
D		199.50		300.25

If the relative error of closure is 1 in 5000, then the perimeter of traverse is

- (1) 71560.11 m
- (2) 1397.41 m
- (3) 17890.30 m
- (4) 5000 m

89. The U fork blumb bomb is used for

(1) masonry work

- (2) levelling of plane table
- (3) centering of plane table
- (4) orientation of plane table

90. The latitude of line is given as

- (1) $/\cos\theta$
- (2) $l \sin \theta$
- (3) /tan⊕
- (4) None of the above

Two tangents intersect at the chainage 1200 m, the deflection angle being 40°. The number of 30 m long normal chords for setting a circular curve of 300 m radius between these two tangents are

- (1) 7
- (2) 4
- (3) 5
- (4) 6

92. The representative fraction of a map scale 1 cm = 5 km is

- (1) 1/500000
- (2) 1/500
- (3) 1/5000
- (4) 1/50000

93,	W	nat is	s the r	ninimu	m 7 c	day strer	ngth of			_ low he	eat c	ement?
			M.Pa			16 M.Pa			30 M.Pa			28 M.Pa
94.		 20 g day		concre	te me	ans, coi		havin	g charact	eristic o	omp	ressive strength at
	(1)	Le	ss tha	n 20 N	/mm²	2		(2)	Less th	an 20 K	g/mn	n ²
	(3)	Мо	ore tha	n 20 N	/mm ²	2		(4)	More th	an 200	N/mr	n ²
95.	an	swe Li	r using st I (d	the cefect)	•	given be	elow th List	e List t II (ca	s : luse)	8	3	select the correct
			stering			•			h surface	•		ed
			wling						opacity			
			nning nning						of too th			film of paint
	U.	A	В	С		D 10,	FOILI	alion	OI DUDDIE	es unde	i uie	mitt of paint
	(1)		iii	ii		- 						
	(2)	iii	į٧	ii		i						C.
	(3)	Ìγ	iii	i		ii						
	(4)	iv	ii	iii							A	,
96.			 liquid	thins t	he co	nsisten	ev of th	e nair	nt ?			
-			mer			Solvent	_		Filler	2	(4)	Drier
97.	_ Kir	ig p	ost ro	of truss	is us	sed for s	pans.		- 0	y		
	(1)	3 to	o 4 m		(2)	5 to 8 m		(3)	10 to 15	5 m	(4)	16 to 20 m
98.	wo for and	rks, wat d 2%	electi er sup	r <mark>ific</mark> atio p <mark>ly a</mark> nd vork ch	n wo d san	rks, con itary wo	tingendriks, 8%	cies a s for e	nd work lectrifica:	charge tion wor	d est k, 3%	supply and sanitary ablishment). If 8% 6 for contingencies I estimated cost of
	(1)	₹ :	24 <mark>,36</mark> ,	000	_			(2)	₹ 24,20	0,000		
	(3)	₹ :	24,37	392				(4)	₹ 22,0	5,000		
99.	In v	whic	h yea	r was	Natio	nal Build	ding Co	ode p	ublished	?		
4	(1)	19	50		(2)	1978	_	(3)	1952		(4)	1970
100.	Ori	gina	al cost	of pro	perty	minus 0	lepreci	ation	is		_	
	(1)	Во	ok va	lue				(2)	Salvage	e value		
	(3)	Ma	arket v	/alue				(4)	Obsole	scence	valu	e
				WORK								

सूचना - (पृष्ठ 1 वरून पुढे....)

- (8) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफवक) करावे. प्रश्नपुस्तिकव्यक्तिता उत्तरपत्रिक्या वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या "परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82" यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावास्य आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होहल.
- (9) सदर प्रश्नपत्रिकेसाठी आयोगाने बिहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वतः बराबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षाकक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपञ्जिच भाग 1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

नमना	प्रश्न

Pick out the correct word to fill in the blank:

Q. No. 201. I congratulate you _____ your grand success.

4

(1) for

(2) at

(3) on

(4) about

ह्या प्रश्नाचे योग्य उत्तर ''(3) on'' असे आहे. त्यामुळे या प्रश्नाचे उत्तर ''(3)'' होईल. थास्तव **खालील** प्रमाणे प्र. क्र. **201** समो<mark>रील उत्तर-क्रमांक ''(3</mark>)'' हे वर्तृळ पूर्णपणे छायांकित करून दाखविणे आवश्यक आहे.

प्रश्न क्र. 201. (1)

2

.

अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तरक्रमांक हा तुम्हाला स्वतंत्ररीत्या पुरविलेल्या उत्तरपारणवरीत त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. ह्याकारणा फक्त काळ्या शाईचे वॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.

परीक्षेचे नांव : महाराष्ट्र अभियांत्रिकी सेवा (स्थापत्य) (पूर्व)- परीक्षा -२०११ परीक्षेचा दिनांक: १५ जानेवारी २०१२ विषय : स्थापत्य अभियांत्रिकी.

महाराष्ट्र लोकसेवा आयागामाणन महाराष्ट्र अभियांत्रिकी सवा (स्वापत्य) (पूर्व)- परीक्षा -२०११ या स्पर्धा परीक्षेच्या वस्तुनिष्ठ स्वरुपाच्या प्रश्नपत्रिकेची उत्तरतालिका उमेदवारांच्या माहितीसाठी संकेतस्थळावर प्रसिद्ध करण्यात आली होती. त्यासंदर्भात उमेदवारांगा आणप्रमाणित (Authentic) स्पष्टीकरण / संदर्भ देऊन पाठिवलेली लेखी निवेदने, तसेच तज्ञांचे अभिप्राय विचारात घेऊन आयोगाने उत्तरतालिका सुधारित केली आहे. या उत्तरतालिका उत्तरे अंतिम समजण्यात येतील. यासंदर्भात आलेली निवेदने जचाना घेतली जाणार नाहीत व ज्ञाणायन काणाता प्रज्ञावहार केला जाणार नाही, याची कृपया नोंद घ्यावी.

उत्तरतालिका

				उत्त
प्रश्न			तरे	
क्रमांक	संच 🗛	संच B	संच C	संच D
1	2	3	2	1
2	4	2	1	3
3	3	1	#	3
4	2	4	3	2
5	2	4	1	#
6	3	2	1	4
7	3	#	3	2
8	#	2	3	2
9	3	1	2	1
10	#	2	#	1
11	2	1	1	1
12	1	1	2	2
13	#	1	2	3
14	3	3	4	3
15	1	2	2	3
16	1	2	4	2
17	2	4	1	1
18	2	3	3	#
19	4	2	2	3
20	2	2	2	1
21	2	3	1	4
22	2	2	2	1
23	2	2	3	3
24	2	2	3	2
25	2	1	3	2

लका				
प्रश्न	उत्तरे			
क्रमांक	संच A	संच B	संच C	संच D
26	3	1	2	2
27	#	3	2	3
28	3	3	2	3
29	2	2	2	3
30	4	#	2	1
31	2	3	3	1
32	#	3	3	2
33	2	#	4	2
34	1	3	1	4
35	2	#	1	2
36	3	4	2	3
37	2	2	3	3
38	2	2	3	4
39	2	1	3	1
40	1	1	1	1
41	4	1	3	4
42	2	2	#	1
43	2	3	3	2
44	1	3	2	3
45	1	3	4	1
46	4	2	3	2
47	1	1	2	2
48	3	#	1	2
49	2	3	2	2
50	2	1	3	2

Dated: 03/03/2012

प्रश्न	उत्तरे			
क्रमांक	संच A	संच B	संच C	संच D
51	3	4	4	3
52	3	1	1	2
53	4	3	2	1
54	1	2	3	2
55	1	2	1	3
56	3	2	2	2
57	2	3	#	2
58	1	3	2	2
59	2	3	1	4
60	3	1	2	1
61	2	1	3	2
62	1	2	2	#
63	4	2	1	2
64	1	4	4	1
65	4	2	4	2
66	3	3	2	2
67	2	3	2	1
68	1	4	2	4
69	4	1	4	1
70	4	1	1	4
71	1	4	3	2
72	1	1	2	4
73	1	2	2	3
74	3	3	2	2
75	2	1	1	2

प्रश्न	उत्तरे			
क्रमांक	संच A	संच B	संच C	संच D
76	1	2	2	3
77	3	2	1	#
78	3	2	4	3
79	2	2	1	2
80	#	2	4	4
81	1	3	2	3
82	2	2	4	2
83	3	1	3	1
84	3	2	2	4
85	3	3	2	4
86	2	2	4	3
87	3	2	2	3
88	3	2	2	#
89	3	4	1	3
90	1	1	1	#
91	4	3	1	3
92	1	#	1	2
93	2	3	1	2
94	3	2	3	2
95	1	4	2	1
96	2	2	3	1
97	2	1	3	1
98	2	4	#	1
99	4	1	3	3
100	1	4	#	2

Dated: 03/03/2012