→ संच क्रमांक

प्रश्नपुस्तिका क्रमांक BOOKLET NO.

प्रश्नपुस्तिका - II स्थापत्य अभियांत्रिकी पेपर - 2

एकण प्रश्न : 100

एक्ण गुण: 200

वेळ : 2 (दोन) तास

सुचना

- (1) सदर प्रश्नपुस्तिकेत 100 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून व्यावी. तसेच अन्य काही दोष आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकडून लगेच बदलून घ्यावी.
- आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसरता बॉलपेनने लिहावा.

- वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे **न विसरता नमृद करावा.**
- या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असन त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपत्रिकेवरील सुचनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नमुद करावा. अशा प्रकारे उत्तरपत्रिकेवर उत्तरक्रमांक नमुद करताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. **ह्याकरिता फक्त** काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
- सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत, घाईमूळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालविता पुढील **प्रश्नाकडे वळवे.** अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- -उत्तरपत्रिकेत एकद। नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
- प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मुल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील तसेच '' उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची दिलेल्या चार उत्तरांपैकी सर्वात योग्य उत्तरेच उत्तरपत्रिकेत नमूद कराबीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील''.

ताकीद

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली बेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नप्रितकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82'' यातील तरतृदीनुसार तसेच प्रचलित कायद्याच्या तरतृदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल्प्र

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेरेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनधिकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरुद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल्प

पुढील सूचना प्रश्नपुस्तिकेच्या अंतिम पृष्ठावर पहा

उघड मील 40 सूचनेविना पर्यवेक्षकांच्या

1.	The areas	enclosed	by the	contours	in a	lake	are as	follows	:
	THE DICUS	CILCIOSCO	D) UIC	COHLOWIS	шчи	THILL	arc us	10110110	٠

Contour (m)

290 270 275 280 285

Area (m²)

50 200 400 600 750

The volume of water between the contours 270 m and 290 m by trapezoidal formula

- 6400 m^3 **(1)**
- 8000 m^3 (2)
- 16000 m³
- 24000 m^3 (4)

The R.L. of A is 98.75 m and the R.L. of B is 100.75 m. The horizontal distance between 2. A and B is 10.0 m. If the contour interval is 0.25 m, the distance of 99.00 m contour line from

- $0.25 \, \mathrm{m}$ (1)
- (2)1.25 m
- 2.0 m
- (4) 2.5 m

3. When the height of signal is not the same as that of the height of instrument, then a correction applied for measurement is known as .

- (1) Curvature correction
- (2)Combined correction
- Axis signal correction
- Refraction correction

4. If h is the height above datum of the object, H be the flying height above datum and r be the radial distance of the image of the object from principal point, then the relief displacement d is equal to:

- (2) $d = \frac{r.H}{h}$ (3) $d = \frac{H.h}{r}$ (4) $d = \frac{r}{H}$

5. In surveying optical square is used to setting out right angles. The horizon glass is placed at an angle of _____ with the horizon sight and index glass is placed at an angle of with the index sight.

- 30° and 15° (1)
- (2)60° and 45°
- 90° and 75° (3)
- 120° and 105° (4)

If an upgrade of +1.4% joins another upgrade of +0.4% and rate of change of grade is 6. 0.1% per 20 m chain, then the length of vertical curve is

- 200 m (1)
- 360 m (2)
- $400 \, \mathrm{m}$
- 80 m (4)

कच्च्या कामासावी जागा/SPACE FOR ROUGH WORK

- 7. A rectangular plot of land of area 0.45 hectare is represented on a map by a similar rectangle of area 5 cm². Calculate R.F. of the scale of the map. Draw a scale to read upto a single metre from the map.
 - 1:5000**(1)**
- (2) 1 | 8000
- (3) 1: 9000
- (4)1:3000
- 8. Two points A and B were fixed on opposite bank of a river. The level was setup near A and the staff readings on A and B were observed as 1.800 m and 1.300 m, respectively. Thereafter, level was setup near B and staff readings observed on B and A were found to be 0.350 m and 0.850 m, respectively. If the R.L. of A is 101.500 m, then R.L. of B is:
 - 102.0 m (1)
- (2) 101.0 m
- (3) 100.0 m
- 100.450 m
- 9. The combined correction due to curvature and refraction in (m) for a distance of 2 kilometer 15 .
 - (1) 0.224 m
- 0.1346 m
- (3) 0.1570 m
- 0.1750 m

- 10. In tacheometric surveying.
 - The intercept of the staff is maximum when the staff is normal to the line of sight.
 - In the tangential system, the staff is kept normal to the line of sight. (b)
 - If a tacheometer is fitted with an anallatic lens, its additive constant is non zero. (c)
 - It is more convenient to hold the staff normal to the line of sight than to hold it vertical. Select the incorrect statement/statements from the above.
 - **(1)** (a) only

- (2) (a) and (b) only
- (a), (b) and (c) only
- (4) (a), (b), (c) and (d) only
- 11. Generally how much amount is provided in estimate as work charged establishment?
 - (1) 1 2%
- (2) $1 l\frac{1}{2}\%$ (3) $2 2\frac{1}{2}\%$
- In rate analysis procedure, by what % the wet volume of concrete is to be increased for determining dry volume?
 - 20% (1)
- 30%
- (3) 52%
- (4)25%

कच्च्या कामासाठी जागा/SPACE FOR ROUGH WORK

		italised value c rest prevailing b	•		net a	nnual rent of ₹	1,000 a	and highest rate of
	(1)	1,000	(2)	1,00,000	(3)	10,000	(4)	100
14.	four		ed. The	total centre line				for each item from lated and for cross
	(1)	½ breadth of	item at	each junction	(2)	1 full breadth	of item	at each junction
	(3)	2 full breadth	of item	at each junction	(4)	no deductions	8	
15.	Whi	ich value is obta	ined by	dismantling the	buildi	ing?		
	(1)	Book Value	(2)	Distress Value	(3)	Salvage Value	(4)	Scrap Value
16.		sanction of deta k by competent		•	ul <mark>ati</mark> o	n, quantities of v	vork, r	ates and cost of the
	(1)	Administrativ	e appro	oval	(2)	Technical sand	tion	
					(4)	Official sanction	NT1	
	(3)	Expenditure s	anction	_ 0 1	(3)	Official saficial	/11	
 17.	Dete						0	lakh, if the rate of
 17.	Dete	ermine the capit		to be invested to			0	lakh, if the rate of
	Deternites	ermine the capit rest is 5%. ₹ 50 lakh	al sum	to be invested to	receiv	ve annual income ₹ 100 lakh	e of ₹ 1	₹ 10 lakh
	Deternites	ermine the capit rest is 5%. ₹ 50 lakh	al sum (2) ring me	to be invested to ₹ 20 lakh thods is also calle	receiv	ve annual income ₹ 100 lakh	e of ₹ 1 (4) to in r	₹ 10 lakh
17. 18.	Dete inter (1)	ermine the capit rest is 5%. ₹ 50 lakh ch of the follow	(2) ring med	to be invested to ₹ 20 lakh thods is also calle	(3)	ve annual income ₹ 100 lakh out to out and in	e of ₹ 1 (4) to in r	₹ 10 lakh ——————nethod ?
18.	Deterinter (1) Whit (1) (3)	ermine the capit rest is 5%. ₹ 50 lakh ch of the follow Long wall and Plinth area m	(2) ring med	to be invested to ₹ 20 lakh thods is also calle	(3) ed as c (2) (4)	ve annual income ₹ 100 lakh out to out and in Centre line me	e of ₹ 1 (4) to in r thod	₹ 10 lakh nethod ? d
18.	Deterinter (1) Whit (1) (3)	ermine the capit rest is 5%. ₹ 50 lakh ch of the follow Long wall and Plinth area managements	(2) ring med thod on for a	to be invested to ₹ 20 lakh thods is also calle	(3) ed as c (2) (4)	ve annual income ₹ 100 lakh out to out and in Centre line me Cubic content 4) should include	e of ₹ 1 (4) to in r thod method	₹ 10 lakh nethod ? d
	Determines (1) Whit (1) (3)	ermine the capit rest is 5%. ₹ 50 lakh ch of the follow Long wall and Plinth area managements ailed specification Quantity of managements General specification	(2) ring metal short ethod on for an aterial, ication,	to be invested to 20 lakh thods is also calle wall method item of P.C.C. (cost of different	(3) ed as c (2) (4) 1:2: mater	ve annual income ₹ 100 lakh out to out and in Centre line me Cubic content 4) should includingly and proport	(4) to in r thod metho le folio	₹ 10 lakh nethod ? d wing points:
18.	Determine (1) White (1) (3) Detate (1)	ermine the capit rest is 5%. ₹ 50 lakh ch of the follow Long wall and Plinth area managed specification Quantity of managed specification General specification items to include	(2) ring metal short ethod on for an aterial, ication, de/excl	to be invested to 20 lakh thods is also calle wall method item of P.C.C. (cost of different materials to be us	(3) ed as c (2) (4) 1:2: mater ed, que f mea	ve annual income ₹ 100 lakh out to out and in Centre line me Cubic content 4) should includingly and proports surement and pa	(4) to in r thod method le folio tion.	₹ 10 lakh nethod ? d wing points : onstruction method,

U13					6						A
20.	A lo	ad of 625 7	is impose	l on a foc	ting of size	e 2 n	n×2 m.				
	lf it	is to be a	ssumed tha	it, stress a	at depth "	ď″ i	s spread	d out at a	n an	gle of :	2 vertical to
	at gr	rouna ieve.	nd out the d l. depth in n					of stress w	ill be	$\binom{1}{9}^{th}$	of the stress
	(1)	2 m	(2)	3 m		(3)	4 m		(4)	5 m	
21.			•								tor of safety s 18 kN/m ³ .
	Find	the minin	num cohesi	ve strengt	h (in kN/)	n²) 1	which th	ne soil sho	uld h	nave.	
	Cho	ose correct	answer fro	m the fol	lowing .						
	(1)	30	(2)	5		(3)	10	<u> </u>	(4)	15	
22.	depo		erved to be								3 m on sand sting of size

(1) 200 kN/m^2

 1000 kN/m^2

 500 kN/m^2

 2000 kN/m^2

In a rock core sampling method at site, the total length of drilling was 1.0 m in rocky strata. 23. There were five intact pieces of rocks of lengths 150 mm, 200 mm, 75 mm, 50 mm, and 200 mm were collected. The value of Rock Quality Designation (RQD) for the rock sample is:

(1) 55.0% 67.5%

62.5%

(4)40.0%

Poisson's ratio of a soil sample is 0.4. Using theory of elasticity, the estimated value of the 24. coefficient of lateral earth pressure at rest in the same soil is .

(1)0.5

0.7 (2)

0.3(3)

1.0 (4)

25. If a concentrated load Q produces a stress of 40 kN/m² at a depth of 1 m, then the stress at 2 m depth and same radial distance will be:

 20 kN/m^2 **(1)**

 80 kN/m^2

 40 kN/m^2

 $(4) = 10 \text{ kN/m}^2$

कच्चा कामासाव जागा/SPACE FOR ROUGH WORK

26.	Amo	ount of compac	tion gre	atly affects :					
	(1)	Water conten	t and M	aximum dry d	lensity				
	(2)	Saturation of	soil						
	(3)	None of the a	bove						
	(4)	All of the abo	ve						
27.	pure	ely cohesive soi	l having	uniform cohe	sion of 5	0 kN/sq. m up	to 10 m	It is embedded depth. If adhes on component v	ion
	(1)	500 kN	(2)	125 kN	(3)	250 kN	(4)	200 kN	
28.						e fail <mark>ed at</mark> 150 N strength of soi		cross-sectional a	rea
	(1)	75 kN/m ²	(2)	375 kN/m ²	(3)	133 kN/m ²	(4)	37.5 kN/m ²	
29.		llel. If the frict						eter and length, arge in M to that	
	(1)	0.50	(2)	0.25	(3)	2.0	(4)	4.0	
30.	Ветг	noulli's equation	n is de r i	ved making as	sumptio	ns that .			
	(1)	The flow is u	niform a	ind incompres	sible.				
	(2)	The flow is n	on-visco	us, uniform a	nd steady	y.			
	(3)	The flow is si	teady, no	on-viscous, inc	ompress	ible and irrotat	ional.		
	(4)	None of the a	bove.						
31.	the a	4 1				•		be 3% in excess head, the measur	
	(1)	3% excess	(2)	2% less	(3)	2% excess	(4)	1.5% excess	
ab ver	या का	मासाठी जागा/SF	PACE FO	OR ROUGH V	VORK				
-1100	ना अस	and simily SE	ACE IL	M ROOGH Y	·OKK			P.T.	Ю.

A uniform body 3 m long, 2 m wide and 1 m deep floats in water. If the depth of immersion is 0.60 m, then the weight of the body is $\frac{1}{2}$

3.53 kN

(2) = 33.5 kN

(3) 35 31 \pm N

none of these

33. For a laminar flow through circular pipe, the maximum velocity is equal to $\underline{}$

1.5 times the average velocity **(1)**

(2)2.0 times the average velocity

2.5 times the average velocity (3)

(4)None of the above

34. Coefficient of contraction is the ratio of p

> (1) actual velocity of jet at Vena contracta to the theoretical velocity.

loss of head in the orifice to the head of water available at the exit of the orifice. (2)

(3)actual discharge through an orifice to the theoretical discharge.

area of jet at Vena contracta to the area of orifice. (4)

Model analysis of aeroplanes and projectile moving at supersonic speed is based

Reynold Number (1)

Froude Number (2)

Mach Number

Euler Number

A dimensionless group formed with variables.

ρ (mass density), μ (dynamic viscosity), g (gravitational acceleration) and D (characteristic length) is :

 $D^{\frac{3}{2}}_{\rho\mu g}$ (2) $\frac{\mu}{\rho g^{\frac{1}{2}}D^{\frac{3}{2}}}$ (3) $\frac{\mu}{\rho gD^{\frac{1}{2}}}$ (4) $\frac{\mu}{\rho^{\frac{1}{2}}Dg^{\frac{1}{2}}}$

In a rectangular channel, carrying a certain discharge at a depth Y_0 and Froude number $F_{o'}$ then Y_c/Y_c -

 F_{o} (1)

(2) $F_0^{\frac{1}{2}}$ (3) $F_0^{\frac{1}{2}}$

कच्चा कामासावै जागा/SPACE FOR ROUGH WORK

In a reciprocating pump without air vessel, the friction head in the delivery pipe is maximum at the crank angle $\theta = 2$
at the chark angle v-1

 $(1) 0^{\circ}$

 $(2) 90^{\circ}$

(3) 135°

(4) 180°

39. An air vessel in the delivery side of a reciprocating pump:

- (1) maintains steady discharge output.
- (2) prevents cavitation in the system.
- (3) enables suction head to be increased.
- (4) enables the pump to run at higher speed.

40. For double acting reciprocating pump, there will be no flow into or from the air valve, when the crank angle is :

(1) 39° 32' and 140° 28'

(2) 39° 32 to 140° 28′

(3) 0° to 39° 32'

(4) 18° 34′ to 161° 26′

41. The specific speed of a centrifugal pump has the dimensions of :

(1) $L^{3/4} T^{-3/2}$

(2) $M^0 L^0 T^0$

(3) $M^{-1/2} L^{1/2} T^{-1/4}$

(4) $\int_{0}^{3/4} T^{-1/2}$

42. The work saved by fitting an air vessel to a double acting reciprocating pump is

(1) 39.2%

(2) 84.8%

(3) 48.8%

(4) 92.3%

43. Match the pair:

(a) Run of river plant

(i) Large storage

- (b) Reservoir plant
- (ii) Water pumped back to the head water tank
- (b) Reservon plant
- (iii) Sea water
- (c) Pumped storage plant
- (iv) No storage

(d) Tidal plant Answer Options:

(a) (b) (c) (d)

- (1) (iii) (i) (iv) (ii)
- (2) (iv) (ii) (iii) (i)
- (3) (iv) (i) (ii) (iii)
- (4) (iv) (iii) (i) (ii)

कच्या कामासाठी जागा/SPACE FOR ROUGH WORK

	(1)	non-adjustable (3	2)	adjustable
	(3)	fixed (4	4)	none of the above
45 .	is 4	•		ng reciprocating pump is 200 mm and its stroken. The theoretical discharge for pump in
	(1)	0.01256 (2) 12.56		(3) 1.256 (4) 0.1256
46.	Whi	nich of the following statement is corre	ect ?	7
	(1)	Centrifugal pump convert hydrauli	ic er	nergy into mechanical <mark>e</mark> nergy.
	(2)	Reciprocating pumps convert mech centrifugal force.	nani	ical energy into hydraulic energy by means of
	(3)	Centrifugal pumps convert mecha centrifugal force.	anic	t <mark>al energy into hydraul</mark> ic energy by <mark>means</mark> of
	(4)	Reciprocating pumps convert hydra	auli	ic e <mark>nergy i</mark> nto mechanical energy.
47 .	The	e design flood commonly adopted in I	ndia	a for spillways of major projects is the :
	(1)	Standard Project Flood. (2	2)	Flood with a Return Period of 100 years.
	(3)	Probable Maximum Flood.	4)	Flood with a Return Period of 10,000 years
48.	The	Thiessen polygon is :		
	(1)	a polygon obtained by joining adjoining	inin	ng raingauge station.
	(2)	a representative area used for weig	hin	g the observed station precipitation.
	(3)	an area used in the construction of	dep	pth-area curve.
	(4)	the descriptive term for the shape of	of hy	ydrograph.
49.		a flow-mass curve study, the demand li mass curve again. This represents the		drawn from a ridge in the curve did not intersect
	(1)	the reservoir was not full at the beg	ginn	iing.
		the storage river not adequate		
	(2)	the storage was not adequate.		
	(2)	the demand cannot be met by the in	nflo	w as the reservoir will not refill.

10

50.	An instantaneous	unit hydrograph	is a direct	run-off hydrograph:
JU.	THE RESIDENCE OF	utut Ityutogiapit	is a unecr	imi-on nyurograph.

- (1) of 1 cm magnitude due to a rainfall excess of 1 h duration.
- (2) that occurs instantaneously due to a unit rainfall excess of duration 'D' h.
- (3) of unit rainfall excess precipitating instantaneously over the catchment.
- (4) occurring at any instant in a long storm.

51. Evaporation losses from surface of a reservoir can be reduced by sprinkling:

(1) DDT

- (2) Acetyl alcohol
- (3) Potassium permanganate
- (4) None of the above

52. Dalton's law is given as

 $(1) \quad E_L = C[e_s + e_a]$

(2) $E_L = C[e_a - e_s]$

(3) $E_1 = C[e_s - e_a]$

(4) $E_L = C[e_s + e_w]$

53. Direct run-off is made up of:

- (1) Surface run-off, prompt interflow and channel precipitation.
- (2) Surface run-off, infiltration and evapotranspiration.
- (3) Overland flow only.
- (4) Rainfall and Evaporation.

54. The Rainfall Intensity of Light Rain is:

(1) Upto 2.5 mm/Hz

(2) Upto 3.0 mm/Hz

(3) Upto 5.00 mm/Hz

(4) Upto 7.5 mm/Hz

55. A plot between rainfall intensity versus time is called as:

- (1) hydrograph
- (2) mass curve
- (3) hyetograph
- (4) isohyet

56. Which of the following is known as 'feeding bottle technique'?

(1) Drip Irrigation

(2) Sprinkler Irrigation

(3) Furrow Method

(4) None of the Above

कच्चा कामासाठी जागा/SPACE FOR ROUGH WORK

57.	This	s type of dam i	requires s	strong abut	ment .				
	(1)	Gravity	(2)	Buttress		(3)	Arch	(4)	All above
58.		en that the b cumec, the dej				and	the duty of th	ne canal	is 1000 hectares
	(1)	0.864 cm	(2)	8.64 cm		(3)	86.4 cm	(4)	864 cm
59.	In B	Sligh Creep The	eory [L/l	H] is called	as:			(
	(1)	Creep Lengt	h		(2)	Нус	Iraulic Gradien	nt (
	(3)	Coefficient o	f Creep		(4)	Pero	colation Coeffic	rient	
60.	For is:	the upstream	face of a	n earthen c	lam, t	he mo	ost adverse con	dition fo	or stability of slope
	(1)	sudden drav	vdown		(2)	stea	dy seepage		
	(3)	during const	truction		(4)	slou	ghing of slope		
61.	Mea	an Water Train	ing mea	ns ·					
	(1)	Training for	discharg	e	(2)	Trai	ning for depth		
	(3)	Training for	sedimen	t	(4)	Trai	ning for flood		
62.							ne sequent dept ssipation devic		er bed is composed erred ?
	(1)	Solid roller b	ucket		(2)	Slot	ted roller buck	et	
	(3)	Ski jump bu	cket		(4)	Still	ing basin		
	` ′								
		main caus <mark>e</mark> of	meande	ring is :					
63.				· ·	pe in t	he riv	er.		
 63.	The	main cause of	n excess	· ·	pe in t	he riv	er.		
<u> </u>	The (1)	main cause of presence of a degradation	n excess	ive bed slop			er. of river sedim	ent duri	ng floods.

कच्चा कामासाठी जागा/SPACE FOR ROUGH WORK

64. Lacey gave V - Q - f relation as:

(1)
$$V = \left[\frac{Qf^2}{160} \right]^{\frac{1}{4}}$$

(2)
$$V = \left[\frac{Qf^2}{140}\right]^{\frac{1}{6}}$$

(3)
$$V = \left[\frac{fQ^2}{160} \right]^{\frac{1}{4}}$$

$$(4) \qquad V = \left[\frac{Qf}{140}\right]^{\frac{1}{6}}$$

65. Which of the following method is recommended by I.R.C. for design of flexible pavement?

- (1) Group index method
- (2) Westergaard method

(3) CBR method

(4) None of these

66. In case of pavement design:

Match the List - I (Type of carriageway) with List - II (Lane distribution factor) :

List - I

List - II

- (a) Undivided roads with two lane carriageway
- (i) 0.75
- (b) Undivided roads with single lane carriageway
- (ii) 1.0
- (c) Divided carriageway with four lanes each
- (iii) 0.45
- (d) Undivided roads with four lane carriageway

(d)

(iv) 0.40

Answer Options:

- (a) (b) (c)
- (1) (ii) (i) (iv) (iii)
- (2) (i) (ii) (iii) (iv)
- (3) (iii) (iv) (i) (ii)
- (4) (iv) (iii) (ii) (i)

67. As per current Viscosity Graded (VG) bitumen specifications in India (IS 73 : 2006, Third revision) the Absolute Viscosity of bitumen using vacuum capillary tube viscometer is determined at ______ temperature.

- (1) 135°C
- (2) 25°C
- (3) 27°C
- (4) 60°C

कच्या कामासावै जागा/SPACE FOR ROUGH WORK

00.	me	super	-eleva	HOIL							
	(1)	dire	ctly p	roport	ional	to the	velocity o	f vehic	eles		
	(2)	inve	rsely	propo	rtiona	l to th	e velocity	of veh	icles		
	(3)	dire	ctly p	roport	ional	to the	width of	pavem	ent		
	(4)	inve	rselv	propo	rtiona	l to th	ie width o	f pavei	ment		
69.	Mat	ch the	pair		····· .						
	(a)	Pene	etratio	n test	:	(i)	Hardnes	s prop	erty of stones	10	3
	(b)	Plate	e bear	ing te	st	(ii)	Hardnes	s or so	ftness of bitum	ien	2
	(c)	CBR	test			(iii)	Penetrati	on test	t for highway	material	
	(d)	Abra	asion	test		(iv)	Modulus	of sub	ograde reaction	n	
	Ans	wer C	ptior	ıs :							
		(a)	(b)	(c)	(d)						
	(1)	(iii)	(iv)	(i)	(ii)						
	(2)	$\langle ii \rangle$	(iv)	(iii)	(i)						
	(3)	(ii)	(iv)	(i)	(iii)						
	(4)	(ii)	(iii)	(i)	(iv)					50	
	Whi	- c h of	the fo	llowii	ng stat	temen	t is/are co	rrect ?		7	
	(a)	Pene	etratio	n test	on bi	tumer	n is carried	l out a	t 27°C.		
	(b)	Duc	tility t	est or	bitur	nen is	carried o	ut at 27	7°C.		
	(c)	In so	oftenir	ıg poi	nt tes	t on b	<mark>itumen</mark> , ra	te of in	ncrease of tem	perature :	is 2°C per minute.
	(d)	The min		(p <mark>ull</mark> i	ing of	stand	ard brique	tte mo	uld specimen :	in ductilit	ry test is 15 mm per
	Апя	wer C	ptior	ıs :							
	(1)	(a) c	nly		(2)	(b) o	mly	(3)	(c) only	(4)	(a) and (d) only
71.									e 70 kmph. U apacity flow is		pped condition the
	(1)	3500	vehi	cles/b	our/l	ane	(2)	3700) vehicles/ho	ır/lane	
						ane	(4)	2000) vehicles/hor	/1	

कच्चा कामासार्वे जागा/SPACE FOR ROUGH WORK

	(1)	65/R	(2)	75/R		(3)	85/R	(4)	95/R
73.		particular case		., .,					of 100 m radius is t
	(1)	0.75%	(2)	1.3%		(3)	2.7%	(4)	3.25%
74.		ase of erection of arted from	-			-	•	about cent	re line, the erection
	(1)	Left end			(2)	Both	ends		
	(3)	Right end			(4)	Non	e of t <mark>he</mark> abo	ove	
75.	take	n as .			ite bent				depth of scour
	(1)	1.25 D	(2)	1.75 D		(3)	1.5 D	(4)	2 D

76.	The	effective span i	for main	girder in	case of	bridg	es is	Ç.	
76.	The (1)	effective span I				J		CO	
76.		-	etween	centres of	f main g	girder	5,	Citr	
76.	(1)	the distance b	etween etween	centres of	f main p	girder: girder:	5, 6.	Cici	
76.	(1) (2)	the distance t	oetween oetween oetween	centres of	f main process for the following froad by the following for the following froad by the following froat by the foll	girders girders pearing	s. s. gs.	Cities	
	(1) (2) (3) (4)	the distance the distance the	oetween oetween oetween	centres of centres of centres of centres of	f main process process for the following from the following for the following from the fo	girders girders pearing g plat	s. gs. es.	not provide	ed :
	(1) (2) (3) (4)	the distance the distance the distance the distance the	petween petween petween petween cowing t	centres of centres of centres of centres of	f main process process for the following from the following for the following from the fo	girders girders gearing g plat	s. gs. es.	not provide	ed :
	(1) (2) (3) (4) In w	the distance the d	petween petween petween petween dowing to	centres of centres of centres of centres of	f main process	girders girders gearing g plat s, win U -	s. gs. es. g walls are	not provide	ed :
777. 778.	(1) (2) (3) (4) In w (1) (3)	the distance that the distance the distance the distance the distance the distance the distance that the distance the distance that	petween petween petween owing to ments ents	centres of centres of centres of centres of centres of centres of Ab	f main g f cross g f road k f bearin butment (2) (4)	girders girders gearing g plat s, win U - Abu	s. gs. g walls are Abutments truent Pier acting on a	iny exposeo	ed :

कच्च्या कामासाज जागा/SPACE FOR ROUGH WORK

79 .	_	per IRC recomn bridge should l			nimum	straig	ght length of	approache	es on either side of
	(1)	15 m	(2)			(3)	25 m	(4)	30 m
80.		IRC Class A lo	_		ose to t	ail sp	acing betwee	en two suc	cessive trains shall
	(1)	12.5 m	(2)	15.5 m		(3)	17.5 m	(4)	18.5 m
81.		width of carriag						each lane i	meaning the width
	(1)	Class A	(2)	Class B		(3)	Class C	(4)	Class 70 R
82.	The	effective linear	waterw	ay in mete	rs is gi	ven b	y :		100
	(1)	$L = 0.75 \text{ V}^2$			(2)	L =	C√Q		
	(3)	$L = 1.811 \text{C} \sqrt{9}$	2		(4)	L=(CQ ²	7446	
83.		ich of the follow	ving is	not a pate	nted e:	xplosi	ve available	in the ma	rket for tunnelling
	(1)	PENT	(2)	RDX		(3)	TNT	(4)	NTT
84.	Whi	ich shape of tun	nel is s	uitable for	the pu	rpose	of navigation	n?	
	(1)	Circular Shap	e		(2)	D SI	hape		
	(3)	Horse-shoe Sh	nape		(4)	Rect	angular Sha	pe	
85,		ch of the follow nelling method		thod of tur	melling	g is be	ing gradually	y replaced	by compressed air
	(1)	Needle beam	method	I	(2)	Belg	ian method		
	(3)	Heading and	Bench 1	method	(4)	Fore	poling metho	~d	

कच्चा कामासाजै जागा/SPACE FOR ROUGH WORK

	Which section of tunnel is also known as segmental root section tunnel?							
	(1)	D section	(2)	Egg Shaped Section				
	(3)	Circular section	(4)	Rectangular Section				
87.	Whi	ch one of the following methods o	of turn	nelling is used in hard rocks?				
	(1)	Fore poling method	(2)	Needle beam method				
	(3)	Heading and Benching method	(4)	Shield tunnelling method				
88.		With reference to tunnelling which of the following factors, are to be considered for deciding the size of the shaft:						
	(1) System used for hoisting		(2)	Size of the muck car				
	(3)	Quantity of muck to be lifted	(4)	Eventual use of the shaft				
89.	The tunnelling method that is not suitable in case of soft soil is :							
	(1) Needle beam method		(2)	Full face method				
	(3)	Fore poling method	(4)	Liner plate method				
90.	The		_					
90.	The	procedure of removal of rock prot	— rusioi					
90.	The is ki	procedure of removal of rock prot nown as : Mucking (2) Skimming	rusion	ns by hammering immediately after the blasting				
	The is kr (1) Wh: vent	procedure of removal of rock protonown as: Mucking (2) Skimming ich one of the following Drift	meth	ns by hammering immediately after the blasting (3) Trimming (4) Scaling				
	The is kr (1) Wh: vent	procedure of removal of rock protonown as: Mucking (2) Skimming ich one of the following Drift tilation?	meth	(3) Trimming (4) Scaling				
	The is kar (1) What vent (1) (3)	procedure of removal of rock protonown as: Mucking (2) Skimming ich one of the following Drift tilation? Top Drift Method Centre Drift Method	meth (2) (4)	(3) Trimming (4) Scaling nod is time consuming but provides good Bottom Drift Method Side Drift Method scouring velocity of 5 m/sec, which among the				
91.	The is kar (1) What vent (1) (3)	procedure of removal of rock protonown as: Mucking (2) Skimming ich one of the following Drift tilation? Top Drift Method Centre Drift Method ie sewer is to be designed for the	meth (2) (4)	(3) Trimming (4) Scaling nod is time consuming but provides good Bottom Drift Method Side Drift Method scouring velocity of 5 m/sec, which among the				

कच्चा कामासाठी जागा/SPACE FOR ROUGH WORK

93.	Select the incorrect pair from the following pairs of treatment unit and impurities removed, in waste water treatment system :								
	(a)	Grit chamber - Sand, silt							
	(b)) Acration tank - Suspended impurities							
	(c)	Skimming tank - Fat and Grease							
	(d)	Screen	- Cl	oth, paper			10		
	Ans	wer Options:					18	2)	
	(1)	(b) and (c)	(2)	(a) and (c)	(3)	Only (c)	(4)	Only (b)	
			<u>.</u>						_
94.	Carl	on monoxide is c	onsid	ered as most po	isonou	s gas in Urban	areas b	ecause .	
	(1)	It causes loss of sense of smell.							
	(2)	lt is carcinogeni	c in n	ature.					
	(3)	It reduces oxyge	en car	rying capacity o	f blood	i.			
	(4)	(4) It may cause conjunctivitis.							
95.		ideal pathogenio	indi	cator used for	bacteri	al analysis of	water is	s exhibited b	y the
	(1)	Escherichia coli		(2)	Enta	moeba histoly	tica		
	(3)	Salmonella typh	i	(4)	Vibi	o comma			
96.	In w	vater treatment pr	ocess,	aeration of wat	er is ca	arried out to .			
	(1)) remove hardness and chlorides from water.							
	(2)	add calcium and magnesium to water.							
	(3)	remove gases like carbon dioxide, hydrogen sulfide and to add oxygen to water.							
	(4)	remove oxygen	from	water and to a	dd car	bon dioxide to	impart	test and odo	ur to

कच्चा कामासाव जागा/SPACE FOR ROUGH WORK

water.

	The unit in which both sedimentation and digestion take place simultaneously is the:							
	(1)	Detritus tank	1	(2) Im	hoff tank			
	(3) Skimming tank (4) Clarifier							
98.	The	sag in the dissolved o	xygen curve re	sults be	cause of DO is a	function	n of :	
	(1)	Both addition and d	epletion of oxy	gen froi	n the stream.			
	(2)	-						
	(3)	The rate of addition	of oxygen is li	near, bu	t not that of dep	letion.		
	(4)	The rate of organic s	ubstances intr	oduced	in the process.			
— 99.	Alu	Alum as a coagulant is found to be effective between pH range of						
		0.0.1-10.0 (7)	8.5 to 10.5	(3)	6.5 to 8.5	(4)	7.0 to 9.0	
	(1)	8.0 to 10.0 (2)		, ,		, ,		
 100.		n oxidation pond, the				rily by	100	
 100.			sewage is mad			rily by	DEED	
 100.	În a	n oxidation pond, the	sewage is madiosis only.			urily by	BEEF	
 100.	In ar	n oxidation pond, the Algae bacteria symb	sewage is madiosis only.			rily by	Berry	

- o O o -

कच्या कामासावे जागा/SPACE FOR ROUGH WORK

परीक्षेचे नांव: महाराष्ट्र स्थापत्य अभियांत्रिकी सेवा (मुख्य) परीक्षा-2019

विषय: - स्थापत्य अभियांत्रिकी पेपर क्र. 2

महाराष्ट्र नोबन्धना आयोग माधन " **महाराष्ट्र स्थापत्य किर्जातको तेवा (मुख्य) पर्तान-2019 (स्थापत्य अभियादिको पेपर क्र. 2)**" या नाण परीक्षेच्या प्रश्न गढक प्रथम उत्तरतालका उमेदचारांच्या माहितासाठा संकेतस्थळावर प्रातब्द करण्यात आली होती. त्यासंद त उमेदवारां पिषप्रमाणित (Authentic) स्पष्टीकरण / संदर्भ देऊन पाठीवलेली लेखी निवेदने, तसेच तन्जांचे अभिप्राय विचारात घेऊन, आयोगाने उत्तरतालिका सुधारित केली आहे. या उत्तरतालिकेतील उत्तरे अंतिम समजण्यात येतील. यासंदर्भात आलेली निवेदने विचारात घेतली जाणार नाहीत व त्याबाबत कोणताही पत्रव्यवहार केला जाणार नाही, याची कृपया नोंद घ्यावी.

वत्तरतालिका - KEY

प्रश्न		उत्तर <u>े</u>				
क्रमांक	संच 🛦	संच B	संचC	संच D		
1	2	#	2	#		
2	2	3	4	3		
3	3	4	#	4		
4	1	1	3	1		
5	4	1	1	4		
6	1	2	4	2		
7	4	4	2	4		
8	1	1	1	2		
9	#	2	4	1		
10	4	4	1	1		
11	3	1	3	3		
12	3	3	1	2		
13	3	3	2	3		
14	1	2	4	4		
15	4	2	3	2		
16	2	2	2	3		
17	2	1	1	1		
18	1	3	3	1		
19	2	4	2	2		
20	3	3	1	#		
21	2	#	3	2		
22	2	1	#	2		
23	1	2	2	4		
24	2	2	4	#		
25	#	2	2	1		

प्रश्न	उत्तरे					
क्रमांक	संच $oldsymbol{A}$	संच B	संचC	संच D		
26	#	#	#	1		
27	1	4	1	3		
28	4	1	2	2		
29	1	3	4	1		
30	3	2	3	4		
31	3	4	2	3		
32	3	4	1	3		
33	2	2	2	3		
34	4	3	3	2		
35	3	3	3	4		
36	2	3	3	2		
37	4	1	4	3		
38	2	2	3	1		
39	1	1	1	2		
40	1	1	3	1		
41	1	3	1	3		
42	1	2	2	1		
43	3	3	1	1		
44	2	1	2	2		
45	2	1	2	3		
46	3	2	1	2		
47	3	1	3	3		
48	2	3	1	3		
49	3	3	1	3		
50	3	3	3	2		

परीक्षेचा दिनांक: 24 नाजंबर, 2019

- 1 - 11th June, 2020

प्रश्न	उत्त						
क्रमांक	संचA	संच B	संचC	संच D			
51	4	3	2	1			
52	3	3	3	1			
53	1	2	4	4			
54	1	4	3	3			
55	3	1	3	3			
56	1	3	2	2			
57	#	1	#	3			
58	3	#	1	#			
59	3	3	3	3			
60	1	3	3	3			
61	3	2	3	3			
62	3	3	3	1			
63	3	3	3	3			
64	2	1	1	1			
65	3	1	4	2			
66	2	1	2	1			
67	4	2	1	2			
68	1	2	2	3			
69	2	2	2	4			
70	2	4	2	1			
71	1	2	4	2			
72	2	4	1	4			
73	4	3	3	2			
74	2	2	4	3			
75	3	3	2	4			

प्रश्न	उत्तरे					
क्रमांक	संच $oldsymbol{A}$	संच B	संचC	संच D		
76	4	3	1	1		
77	3	1	4	1		
78	3	4	3	4		
79	1	3	3	3		
80	4	1	2	3		
81	1	4	3	2		
82	2	2	1	2		
83	4	4	3	4		
84	2	4	1	4		
85	4	3	4	3		
86	1	3	4	2		
87	3	2	2	4		
88	3	2	4	1		
89	2	4	3	2		
90	4	3	3	3		
91	3	1	2	3		
92	2	2	2	3		
93	4	2	3	1		
94	3	3	1	1		
95	1	3	1	2		
96	3	4	3	4		
97	2	4	3	4		
98	1	1	2	2		
99	3	1	4	3		
100	4	3	4	3		

11th **June**, 2020