सहाराष्ट्र अभिग्रांतिकी (स्थापत्य) (मुख्य) परीक्षा-201६ १० जामेवारी, 201६

2016

CODE: CO7

प्रश्नपुस्तिका क्रमांक BOOKLET NO.

प्रश्नपुस्तिका-III

एकूण प्रश्न: 100

वेळ : 2 (दोन) तास

स्थापित्य अभियांत्रिकी पेपर-2

एकूण गुण: 200

शेवटचा अंक

सूचना

- (1) सदर प्रश्नपुस्तिकेत 100 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. असा तसेच अन्य काही दोष आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकडून लगेच बदलून घ्यावी.
- (2) आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसरता बॉलपेनने लिहावा. केंद्राची संकेताक्षरे
- (3) वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे न विसरता नमूद करावा.
- (4) या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपत्रिकेवरील सूचनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नमूद करावा. अशा प्रकारे उत्तरपत्रिकेवर उत्तरक्रमांक नमूद करावा. तो संबंधित प्रश्नक्रमांकासमोर छाथांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकिस्ता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
- (5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालविता पुढील प्रश्नाकडे वळावे. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- (6) उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
- (७) प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच ''उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची दिलेल्या चार पर्यायापैकी सर्वात योग्य उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यथा त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील''.

ताकीद

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82'' यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनिधकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरूद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

पुढील सूचना प्रश्नपुस्तिकेच्या अंतिम पृष्ठावर पहा

पर्यवेक्षकांच्या सूचनेविना

उघड

सील

心

	The modern electronic Tacheometers are a combination of									
	(a)	An electronic t	heodo!	lite						
	(b)	An electronic o	lata co	llector						
	(c) An Electric distance measurement									
	Ans	wer options :								
	(1) (a) and (b) only				(2)	(b) a	and (c) only	_		
	(3)	(a) and (c) only	7		(4)	All	of the above	4)		
2.	ln cl	hain surveying, p	erpen	diculars to	the ch	ain lis	ne are set out by	:		
	(1)	a theodolite			(2)	a pr	ismatic compass			
	(3)	a clinometer			(4)	an c	ptical square			
3.	Leas	st count of a level	lling st	aff is :			1		60	
	(1)	1 cm			(2)	5 m	m			
		1 mm			(4)	Nor	e of the above			
		backsight readin he top of worksh	-						•	
	The on to (1)	•	(2)	or was 1.45 146.300 i	50 m. ' m	(3)	L. of the top of 1 150.800 m	worksł (4)	nop floor is : 145.800 m	
4.	The on to (1)	he top of worksh 154.300 m 'is the number of	(2)	or was 1.45 146.300 i	50 m. ' m ———— se, whil	(3)	L. of the top of 1 150.800 m	worksł (4)	nop floor is : 145.800 m	
	The on to (1) If 'n' inclu (1) Wha	he top of worksh 154.300 m ' is the number of aded angles shou	(2) sides (1) (2)	or was 1.45 146.300 r of a travers (2n+4) ×	50 m. 'm se, whil	(3) e thec	L. of the top of $\frac{150.800 \text{ m}}{2000}$ m dolite traversing $\frac{(2n \pm 4) \times 90^{\circ}}{2000}$	(4) the su	nop floor is: 145.800 m m of the interior	
5	The on to (1) If 'n' inclu (1) Wha	he top of worksh 154.300 m is the number of aded angles show (2n-4) × 90° at will be the cu	(2) sides (1) (2)	or was 1.45 146.300 r of a travers (2n+4) ×	se, while on for	(3) e thec	L. of the top of $\frac{150.800 \text{ m}}{2000}$ m dolite traversing $\frac{(2n \pm 4) \times 90^{\circ}}{2000}$	(4) the su	nop floor is: 145.800 m m of the interior	
	The on t (1) If 'n inclu (1) What 1000 (1)	he top of worksh 154.300 m is the number of uded angles show (2n-4) × 90° at will be the cu) m.?	(2) sides (1) (2) rvatur (2)	of a travers (2n+4) × re correction 0.0785 m	se, while (90°	(3) e theo (3) staff (3)	L. of the top of the 150.800 m dolite traversing (2n ± 4) × 90° reading, in level	(4) the su (4)	nop floor is: 145.800 m m of the interior 360° or a distance of	
6.	The on t (1) If 'n inclu (1) What 1000 (1)	he top of worksh 154.300 m ' is the number of uded angles shout (2n-4) × 90° at will be the cut) m.? 0.0673 m	(2) sides (1) (2) rvatur (2)	of a travers (2n+4) × re correction 0.0785 m	se, while on for	(3) e theo (3) staff (3)	L. of the top of the 150.800 m dolite traversing (2n ± 4) × 90° reading, in level	(4) the su (4)	nop floor is: 145.800 m m of the interior 360° or a distance of	
6.	The on t (1) If 'n inclu (1) What 1000 (1) Spir (1)	he top of worksh 154.300 m is the number of uded angles shout (2n-4) × 90° at will be the cut) m.? 0.0673 m e test is carried of	(2) sides (1) (2) rvatur (2) out for (2)	or was 1.45 146.300 r of a travers (2n+4) × re correction 0.0785 m the permanantus leve	se, while	(3) e theo (3) staff: (3) djustn (3)	L. of the top of a 150.800 m dolite traversing (2n ± 4) × 90° reading, in level 78.50 m ment of . Tilting level	(4) the su (4) ling fo (4)	nop floor is: 145.800 m m of the interior 360° or a distance of 6.73 m None of these	

	What is the magnetic declination at a place if the magnetic bearing of the sun at noon at that place is 186°?										
	(1)	6° W	(2)	6° E		(3)	0° W	(4)	0° E		
10.		process of locatin						able fron	n stations whose		
	(1)	Orientation	(2)	Radiation	1	(3)	Intersection	(4)	Resection		
 11.	Salv	age value is defi	ned as	:							
	(1)	value of disma	ntled n	naterials of	a proj	perty a	at the end of it	s utility j	period		
	(2)	estimated valu dismantled	e of a	built up p	ropert	y at tl	he end <mark>of</mark> its u	iseful life	e without being		
	(3)	value of the pr	operty	shown in	the ac	count	book in that p	articular	year		
	(4)	present value o	of a pro	perty cons	iderin	g it to	be replaced at	the curr	e <mark>nt m</mark> arket rates		
 12.		rights and privile		nich an owr	ne <mark>r of a</mark>	prope	erty enjoys thro	ough or o	ver the property		
	of as	nother is known Property right	as: (2)	nich an owr Lease rig		prope (3)	erty enjoys thro Legal right	ough or o	ver the property Fasement		
	of as	Property right a contract to be v	as : (2) valid :	Lease rig	ght	(3)	- 3	10			
	of a: (1) For (a)	Property right a contract to be vertices to the contract.	as: (2) valid: ontrace	Lease rig	tht:	(3)	- 3	10			
	of as (1) For (a) (b)	Proper proposa	as: (2) valid: ontract al and	Lease rig	comp	(3)	Legal right	10			
	of as (1) For (a) (b) (c)	Property right a contract to be a Parties to the c Proper proposa Free consent of	as: (2) valid: ontrace al and partie	Lease rig t should be its accepta s involved	comp	(3)	Legal right	10			
	of as (1) For (a) (b) (c) (d)	Property right a contract to be very parties to the consent of Lawful consider.	as: (2) valid: ontrace al and partie	Lease rig t should be its accepta s involved	comp	(3)	Legal right	10			
	of as (1) For (a) (b) (c) (d)	Property right a contract to be a Parties to the c Proper proposa Free consent of	as: (2) valid: ontrace al and partie	Lease rig t should be its accepta s involved	comp	(3)	Legal right	10			
112.	of as (1) For (a) (b) (c) (d) Ans	Property right a contract to be a Parties to the c Proper proposa Free consent of Lawful consider wer options:	as: (2) valid: ontrace al and partie	Lease rig t should be its accepta s involved	comp nce in the	(3) petent agree	Legal right	10			
	of as (1) For (a) (b) (c) (d) Ans (1) (3)	Property right a contract to be a Parties to the c Proper proposa Free consent of Lawful consider wer options: (a) and (c)	as: (2) valid: ontrace al and partie eration	Lease rig	comp nce in the (2) (4)	(3) Detent agree (c) o All o	Legal right ment nly of the above excavation exc	(4)	Easement		

कच्चा कामासार्व जागा /SPACE FOR ROUGH WORK

- 15. A tender is said to be informal:
 - (a) When it is not submitted in the form sold by the department
 - (b) When the tender is not properly filled in or signed by the contractor
 - (c) When the tender is made conditional by way of adding indefinite an i uncertain liabilities of usual character to it.
 - (d) When it is not supported by the requisite earnest money in the manner prescribed for the purpose in PWD form :

Answer options:

- (1) (a), (b), (c)
- (2) (a), (b), (c), (d) (3)
- (3) (a), (d)
- (4) (d)
- 16. At what change of price level is a revised estimate prepared?
 - (1) 2.0%
- (2) 2.5%
- (3) 4.0%
- (4) 5.0%
- 17. Which committee recommended that an allowance of 10% of the prime cost as the contractor's profit would be reasonable?
 - (1) The Rates and Costs Committee, 1957 (2)
 - 2) MPWD Committee, 1940
 - (3) CPWD Committee, 1950
- (4) MPSC Committee, 2010
- **18.** The capitalised value of a property fetching a net annual rent of ₹ 1000 with highest rate of interest prevailing being 5%, would be:
 - (1) ₹800
- (2) ₹ 1000
- (3) ₹ 10,000
- (4) ₹ 20,000
- 19. While submitting a tender, the contractor is required to deposit some amount with the department, as guarantee of the tender, known as
 - (1) Bank Guarantee (2)
- EMD.
- (3) S.D.
- (4) F.D.
- 20. If the porosity of a soil sample is 40%, its void ratio is :
 - (1) $\frac{2}{3}$
- (2) $\frac{1}{3}$
- (3) $\frac{1}{2}$
- (4) 1
- 21. A cube of soil specimen having dimensions 2 cm × 2 cm × 2 cm weighs 16 gm when it is fully saturated. If void ratio of the specimen is 1.0, the dry density of the specimen will be:
 - (1) 2000 kg/m^3
- (2) 1500 kg/m^3
- (3) 1200 kg/m^3
- (4) 1600 kg/m^3

कच्या कामासाठी जागा /SPACE FOR ROUGH WORK

22. Statement (A): In Boussinesq's theory of stress computations, soil is considered to be un-stressed before application of the load.

Statement (B): The contact pressure distribution under a rigid footing in cohesionless soil, is uniform throughout the width of the footing.

- (1) Both the statements (A) and (B) are correct.
- (2) Statement (A) is correct but (B) is wrong.
- (3) Statement (A) is wrong but (B) is correct.
- (4) Both the statements (A) and (B) are wrong.
- 23. A sample of dry sand was tested in direct shear test apparatus under a normal load of 72 kg. The shear load required to fail the sample was found to be 36 kg. The angle of internal friction (φ) will be
 - (1) $\tan^{-1}\left(\frac{72+36}{36}\right)$

(2) $\tan^{-1}\left(\frac{72+36}{72}\right)$

 $(3) \quad \tan^{-1}\left(\frac{36}{72}\right)$

- $(4) \quad \tan^{-1}\left(\frac{72}{36}\right)$
- 24. A point load exerts a maximum vertical stress at a radial distance of 1 m and at a depth of .
 - (1) 0.817
- (2) 0.477
- (3) 1.00
- (4) 1.225
- 25. Statement (A) Coffer-dam is a structure to be constructed in standing water condition prior to the construction of bridge foundations.

Statement (B): Cutting edge and steining are the two essential component parts of the coffer-dam.

- (1) Both the statements (A) and (B) are true.
- (2) Both the statements (A) and (B) are false.
- (3) Statement (A) is true but (B) is false.
- (4) Statement (B) is true but (A) is false.
- 26. From the following statements, select the most appropriate statement:

Westergaard's analysis for stress computation within soil mass assumes.

- (1) Point load at the surface and soil being homogeneous and isotropic
- (2) Line load at the surface and soil being homogeneous and non-isotropic
- (3) Point load at the surface and soil being homogeneous and non-isotropic
- (4) Line load at the surface and soil being non-homogeneous and isotropic

कच्चा कामासाचे जागा /SPACE FOR ROUGH WORK

- 27. An all-around RCC peripheral retaining wall is constructed for a basement to retain soil on the other side. The retaining wall has RCC floor slab constructed at the top. The earth pressure on retaining wall will be analyzed in:
 - (1) Passive condition
 - (2) Active condition
 - (3) At rest condition
 - (4) Partially active and partially passive condition
- 28. Match the pairs.
 - (a) Compaction
- (i) Expulsion of water

(b) Swelling

- (ii) Sudden volume decrease
- (c) Consolidation
- (iii) Increase in volume

(d) Collapse

(iv) Expulsion of air

Answer options:

- (a)
- **(b)**
 - (c) (d)
- (1) (i) (iii)
 - ii) (iv) (ii)
- (2) (ii)
- (iii) (iv) (i)
- (3) (i)
- (iv) (ii) (iii)
- (4) (iv)
- (iii)
- (i) (ii)
- 29. The specific speed of turbine is defined as
 - $(1) \quad \frac{H^{\frac{5}{3}}}{N\sqrt{P}}$
- $(2) \quad \frac{NP^{\frac{3}{4}}}{\sqrt{H}}$
- $(3) \quad \frac{N\sqrt{P}}{H^{\frac{5}{4}}}$
- (4) $\frac{N^{\frac{5}{4}}P}{\sqrt{H}}$

- 30. Muschel curves belong to the category of :
 - (1) main characteristic curves of a turbine
 - (2) operating characteristic curves of a turbine
 - (3) constant efficiency curves of a turbine
 - (4) operating characteristics of a pump
- 31. Pathlines refer to the motion of identified fluid particles of elements and therefore constitute a feature of the :
 - (1) Lagrangian Approach
- (2) Eulerian Approach
- (3) Rayleigh's Approach
- (4) None of the above

कच्चा कामासाठी जागा /SPACE FOR ROUGH WORK

32.	The separation of a boundary layer occurs when											
	(1)	the.	flow i	is acce	lerated	past a bounda	ту					
	(2)	the	bound	dary la	ayer com	nes to rest						
	(3)	3) any adverse pressure is encountered										
	(4)											
33.	Cho	ose th	e cor	rect n	natch :		(A)					
	(a) Inertial force to surface tensile force						(i)	Reynold's No.				
	(b)	lner	tial fo	rce to	viscous	force	(ii)	Euler No.				
	(c)	Iner	tial fo	rce to	pressur	e force	(iii)	Mach No.				
	(d)	Iner	tial fo	rce to	elastic i	orce	(iv)	Weber No.				
							(v)	Froude No.				
	Aлs	wer o	ption	ıs:								
		(a)	(b)	(c)	(d)							
	(1)	(iii)	(i)	(ii)	(iv)							
	(2)	(iii)	(ii)	(iv)	(i)							
	(3)	(iv)	(v)	(ii)	(iii)			0000				
	(4)	(iv)	(i)	(ii)	(iii)							
34.	The	centre	of p	ressur	e will co	incide with th	e centre of g	ravity if a plane surface is :				
	(1)	Vert	ical			(2)	Horizonta	ıl				
	(3)	Imir	ersed	linaş	gas	(4)	None of th	ne above				
35.	insta	alled o	n it.	When	the pip		owards in the	hich is measured by venturimeter e direction of flow, the reading of				
	(1)	will	incre	ase		(2)	will remai	n same				
	(3)	will	decre	ease		(4)	may flucti	uate with time				
	(-)			A surge tank is provided in hydropower schemes to								
36 .		irge ta	nk is	p ro vi	ded in h	ydropower sc	hemes to					
36 .		_			ded in h penstock	•	hemes to					
36.	A su	strei	ngthe	n the	penstock	•	hemes to					
36.	A su (1)	stre: redu	ngthei	n the sater h	penstock ammer j	KS	hemes to					

कच्चा कामासार्व जागा /SPACE FOR ROUGH WORK

If three pipes of different diameters, lengths and friction factors are connected in series, then:

(1)
$$f=f_1+f_2+f_3$$

(2)
$$hf_1 = hf_2 = hf_3$$

(3)
$$Q = Q_1 + Q_2 + Q_3$$

(4)
$$Q_1 = Q_2 = Q_3$$

The difference between theoretical discharge and actual discharge of pump is known as 38.

gap of discharge (1)

differential discharge (2)

(3) slip of pump (4)suction gap

A unit speed is obtained by which of the following equations with usual notations?

$$(1) \quad N_{u} = \frac{N}{\sqrt{H}}$$

(1)
$$N_u = \frac{N}{\sqrt{H}}$$
 (2) $N_u = \frac{\sqrt{N}}{H}$ (3) $N_u = \frac{\sqrt{N}}{\sqrt{H}}$

(3)
$$N_u = \frac{\sqrt{N}}{\sqrt{H}}$$

$$(4) N_{\rm u} = \frac{N_{\rm u}^2}{\frac{1}{15}}$$

40. A turbine is a device which converts:

- (1) Hydraulic energy into mechanical energy
- (2) Mechanical energy into hydraulic energy
- (3) Kinetic energy into mechanical energy
- Electrical energy into mechanical energy

Operating characteristic curves of a turbine are: **4**1.

- (1) Varying speed curves
- (2)Constant efficiency curves
- Constant head curves (3)
- (4) Constant speed curves

42. Overall efficiency of a pump is obtained by which of the following equations with usual notations?

- $\eta_0 = \eta_{man} \times \eta_{mech}$
- $(2) \quad \eta_0 = \eta_{hy} \times \eta_{mech}$

 $\eta_0 = \eta_{man} \times \eta_{hy}$

(4) $\eta_0 = \eta_{\text{vol}} \times \eta_{\text{min}}$

To produce a high head multi-stage centrifugal pumps, the impellers are connected:

in parallel (1)

- in series (2)
- in parallel and in series both
- (4)none of the above

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK

- The specific speed(N_s) of a pump is given by : 44.

- (1) $N_s = \frac{N\sqrt{Q}}{H_s^{\frac{3}{4}}}$ (2) $N_s = \frac{N\sqrt{P}}{H_s^{\frac{3}{4}}}$ (3) $N_s = \frac{N\sqrt{Q}}{H_s^{\frac{3}{4}}}$ (4) $N_s = \frac{N\sqrt{P}}{H_s^{\frac{3}{4}}}$
- 45. Number of buckets on a Pelton wheel are calculated by which equation with usual notations
 - (1) $Z = 15 + \frac{D}{2d}$

- (2) $Z = 15 + \frac{2D}{d}$
- (3) $Z = 15 \div 2 \left(\frac{D}{d}\right) n$
- (4) $Z = 15 + \frac{d}{D}$
- 46. Which of the following statements is correct?
 - Pelton wheel is a reaction turbine (1)
 - Pelton wheel is a radial flow turbine (2)
 - Pelton wheel is an impulse turbine (3)
 - None of the above (4)
- When specific information about the density of snowfall is not available, the water equivalent of snowfall is taken as:
 - **(1)** 50%
- (2)30%
- (3) 10%
- (4)90%
- The percentage of total quantity of fresh water in the world available in the liquid form is 48. about:
 - (1) 30%
- 70% (2)
- (3)11%
- (4) 51%
- The precipitation in the form of water drops of sizes larger than 0.5 mm is known as
 - snow
- (2) drizzle
- glaze
- rainfall (4)
- The chemical that is found to be more suitable as water evaporation inhibitor is:
 - **(1)** ethyl alcohol
- (2)methyl alcohol (3)
 - cetyl alcohol
- (4)bytył alcohol

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK

51. In a DAD analysis the maximum average depth of rainfall for an 18 hr storm was 28 cm in an area of size 10 km². For the same duration the maximum average depth in an area of 1000 km² can be expected to be:

$$(1) = 28 \text{ cm}$$

$$(2) < 28 \text{ cm}$$

$$(3) > 28 \text{ cm}$$

52. The direct runoff is made up of :

- (2) surface runoff, prompt interflow and channel precipitation
- (3) surface runoff, infiltration and evapotranspiration
- (4) rainfall and evaporation

53. Precipitation falling during the growing period of a crop that is available to meet the evapo-transpiration needs of the crop is known as:

- (1) effective rainfall
- (2) transpiration

(3) conjuctive use

(4) potential rainfall

54. Evapotranspiration is confined to:

(1) daylight hours

- (2) night-time only
- (3) land surfaces only
- (4) none of the above

55. The prismoidal formula with usual notations is:

(1)
$$\Delta S = \text{storage} = \frac{\Delta h}{5} [A_1 + 4A_2 + A_3...]$$

(2)
$$\Delta S = \text{storage} = \frac{\Delta h}{6} [A_1 + 4A_2 + A_3...]$$

(3)
$$\Delta S = \text{storage} = \frac{\Delta h}{3} [A_1 + 4A_2 + A_3...]$$

(4)
$$\Delta S = storage = \frac{\Delta h}{6} [A_1 + 3A_2 + 4A_3...]$$

कच्च्या कामासाञ जागा /SPACE FOR ROUGH WORK

56.	An aqueduct is a cross drainage work provided to carry canal over a natural drain when:								
	(1) canal bed is at the same level as the	he be	ed of the natural drain	n.					
	(2) canal bed is below the H.F.L. of the natural drain.								
	(3) canal bed is well above the H.F.L. of the natural drain.								
	(4) canal bed is below the bed of the	natu	ral drain.						
<u> </u>	Open flume outlet is :		(2					
	(1) an orifice	(2)	a weir	9					
	(3) a meter	(4)	none of the above						
58.	In a saddle-siphon spillway, an air vent to	is pro	ovided at the level of t	he full	reservoir surface				
	(1) break the siphonic action at that le	evel							
	(2) initiate the siphonic action at that	leve:	·I						
	(3) prevent cavitation								
	(4) maintain ventilation inside the sig	hon			-				
<u> </u>	is aligned along a watershee	d and	d runs for most of its	length	on a watershed.				
	(1) Ridge canal	(2)	Contour canal	Ü					
	(3) Side slope canal	(4)	None of the above						
 60.	As per IS 10430-1982, the life of canal for	or cor	ncrete lining is assum	ed to b					
À	(1) 40 years (2) 60 years	Ś	(3) 80 years	(4)	99 years				
61.	maintain a deep channel in silt and a part of flood discharge on the								
	(1) Radial gates (2) Spillway		(3) Stilling basin	(4)	Under sluice				
62.	In a syphon aqueduct, severe condition	of m	naximum uplift on the	e floor o	occurs when:				
	(1) canal runs full, drain is dry but w	ater i	table is at the stream	bed.					
	(2) canal is dry and drain is passing t	he hi	ighest flood.						
	(3) canal runs dry and drain also run	s dry	- ₹.						
	(4) both canal and drain run full.	-							
	या कामासाठी जागा /SPACE FOR ROUGH	won							
4,00	at an arms and for tree LOW MODOLL		u.						

12

13

CO7

- 63. In ______ the overflowing water is guided smoothly over the crest and profile of the spillway.
 - (1) Straight drop Spillway
- (2) Ogee Spillway
- (3) Tunnel Spillway
- (4) Siphon Spillway
- 64. The ratio of rate of change of discharge of an outlet to the rate of change of the discharge of the distribution channel is known as ______
 - (1) Flexibility
- 2) Setting
- (3) Sensitivity
- (4) Efficiency
- 65. Match the pairs for determination of thickness of flexible pavement by appropriate method.
 - (a) California Bearing Ratio Method
- (i) $T = \frac{K(TI)(90-R)}{C^{\frac{1}{5}}}$
- (b) California Resistance Valve Method
- (ii) $T = K \log_{10}^{\frac{P}{S}}$

(c) Triaxial Method

(iii) $T = \left[\frac{1.75P}{CBR} - \frac{A}{\pi}\right]^{\frac{1}{2}}$

(d) McLeod Method

(iv) $T = \sqrt{\left(\frac{3PXY}{2\pi E_s \Delta}\right)^2 - a^2}$

Answer options:

- (a) (b)
- (c)
- (1) (i)
- (iv) (iii)
- (2) (iii)
- (iv) (ii)
- (3) (i)
- (iii) (ii)
- (ii) (iv)

(d)

(ii)

(i)

- (4) (iii)
- (iv) (ii)
- 66. The maximum width of expansion joint and maximum spacing between expansion joint for rough interface layer is:
 - (1) 2.5 cm and 160 m

(i)

- (2) 2.0 cm and 130 m
- (3) 2.5 cm and 140 m
- (4) 2.5 cm and 100 m

कच्चा कामासाठी जागा /SPACE FOR ROUGH WORK

	The total length of tie bar of 1 cm diameter embedded in a cement concrete paver with allowable working stress in steel in tension equal to 1400 kg/cm² and allow bond stress in deformed bars in concrete 24.6 kg/cm², is:										
	(1)	18.87 cm	(2)	113.82 cm	(3)	56.9 cm	(4)	28.45 cm			
68.	The	tests performed	for de	ccting whet	her bitumer	n is cracked o	r not, is/	are :			
	(a)	Spot test		(b)	Solubility t	est	- (6				
	(c)	Float test		(d)	Ductility to	est					
	Sele	et the correct alt	ernativ	e out of the	following:						
	(1)	(a) only		(2)	(a) and (b)	only					
	(3)	(a), (c) and (d)	only	(4)	(b) and (d)	only					
69.	The	dowel bars are	provide	ed at :				10.			
	(1)	Expansion joir	nt								
	(2)	Contraction jo	int								
	(3)	Both (1) and (2	7 1								
	(2)	DOIN (1) 12102 (2	-)								
	(4)	Both (1) and (2		Longitudina	l joint	26					
 70.	(4)	•	2) and 1		<u></u>	e of :	100				
7 0.	(4)	Both (1) and (2	2) and 1		<u></u>	e of :	100				
 70.	(4)	Both (1) and (2	2) and 1		<u></u>	e of :	100				
 70.	(4) Failt	Both (1) and (2 ures in flexible p Sub grade	2) and i		<u></u>	e of :	100				
70.	(4) Faile (a) (b) (c)	Both (1) and (2 ures in flexible p Sub grade Base course	2) and i		<u></u>	e of :	100				
70.	(4) Faile (a) (b) (c)	Both (1) and (2) ures in flexible p Sub grade Base course Wearing Cour	2) and l		<u></u>		100				
70.	(4) Faile (a) (b) (c) Ans	Both (1) and (2) ures in flexible p Sub grade Base course Wearing Course wer options:	2) and leavements	nts are due t	the failure	only	100				
71.	(4) Faile (a) (b) (c) Ans (1) (3)	Both (1) and (2) ures in flexible p Sub grade Base course Wearing Course wer options: (a) and (b) onl	2) and 1 avementse	(2) (4)	(a) and (c) (a), (b) and	only (c)					
	(4) Faile (a) (b) (c) Ans (1) (3)	Both (1) and (2) ures in flexible p Sub grade Base course Wearing Course wer options: (a) and (b) onl (b) and (c) only	2) and 1 eavements se y y ecified	(2) (4) as 80-100 or	(a) and (c) (a), (b) and $\frac{80}{100}$ grade,	only (c)					
	(4) Faile (a) (b) (c) Ans (1) (3)	Both (1) and (2) ures in flexible p Sub grade Base course Wearing Course wer options: (a) and (b) onl (b) and (c) only umen grade is specimen	2) and 1 pavements se y y ecified nt is be	(2) (4) as 80-100 or	(a) and (c) (a), (b) and (a) grade, (a) 100.	only (c) this means :					
	(4) Fails (a) (b) (c) Ans (1) (3) Bitu (1)	Both (1) and (2) ures in flexible p Sub grade Base course Wearing Course wer options: (a) and (b) onl (b) and (c) only men grade is specification.	2) and 1 eavement se y ecified nt is bettumen i	(2) (4) as 80-100 or etween 80 to s between 8	(a) and (c) (a), (b) and 80 100 grade, 100. 0 to 100 mm	only (c) this means:					

कच्च्या कामासाने जागा /SPACE FOR ROUGH WORK

	The critical condition of stresses for combination of stresses in cement concrete pavement during summer is										
	(1)	load stress + v	varping	stress – frio	tional stres	S					
	(2)	load stress + v	varping	stress							
	(3)	load stress + warping stress + frictional stress									
	(4)	load stress+f	rictiona	stress			6				
7 3.	Arra	ange the followi	ing laye	rs of flexible	e pavement	from top to be	ottom:				
	(a)	Sub-base cour	rse	(b)	Base cour	se					
	(c)	Surface cours	e	(d)	Sub-grade	2					
	Ans	wer option :									
	(1)	(c), (a), (d), (b)	(2)	(c), (b), (d	.), (a)					
	(3)	(c), (a), (b), (d)	(4)	(c), (b), (a), (d)					
74.		ulvert can be d ween the faces o			ng with a t	otal length no	t exceed	ling			
	743	<i>C</i>	(0)	_	4-55		(4)	40			
	(1)	6 m	(2)	7 m	(3)	8 m	(4)	10 m			
 7 5.		at should be th				-60		bridge for rural			
—— 75.	Wha	at should be th				-60					
75. 76.	Wharea	at should be th	(2)	num width	of foot pa	th while desig	gning a	bridge for rural			
	Wharea	at should be th as ? 1.5 m	(2)	num width	of foot pa	th while desig	gning a	bridge for rural			
	Whatarea (1)	at should be the as? 1.5 m cimum scour de 1.25 D	(2) pth at a	num width 2.0 m severe ben 1.50 D	(3) d is:	th while desig	(4)	3.0 m 2.00 D			
76.	Whatarea (1)	at should be the as? 1.5 m cimum scour de 1.25 D	(2) pth at a	num width 2.0 m severe ben 1.50 D	(3) d is:	th while design 2.5 m	(4)	3.0 m 2.00 D			
4	Whatea (1) Max (1) (1)	at should be the service of the serv	pth at a (2) defined (2) which t	num width 2.0 m severe ben 1.50 D as a rise of Afflux	of foot pa (3) d is: (3) water level (3)	th while design 2.5 m 1.75 D on the upstreament.	(4) (4) am side (4)	bridge for rural 3.0 m 2.00 D of a bridge.			

79.	The type of bearing used on a bridge depends on :											
	(1)	Extent of movement a	at the bridg	ge end	s							
	(2)	Temperature Variation	ns									
	(3)	Load carried										
	(4)	All of the above										
80.		minimum vertical cle 3.0 m³ per second is :	arance for	oper	ning of high level b	ridges f	or discharge o					
	(1)	150 mm (2)	250 mm		(3) 350 mm	(4)	450 mm					
81.		ridge designed to allow ped during floods is call		ods to	pass through its ven	ts but all	lowed to be ove					
	(1)	Submersible bridge		(2)	Under bridge							
	(3)	Seasonal bridge		(4)	None of the above							
82.	Adv	Advantages of asphaltic concrete (Bituminous Concrete) are :										
	(a)	Durability	(b)	Imp	erviousness							
	(c)	Load spreading prope	erly (d)	Qui	ckly openable to traf	fic						
	(e)	Good skid Resistance										
	Ans	wer options :										
	(1)	(a) and (b) only.	(2)	(a),	(b) and (c) only.							
	(3)	(a), (b), (c) and (d) on	ly. (4)	All	of the above.							
83.	Pick up the explosive used for tunnelling in soft rocks from the following :											
	(1)	Special gelatine		(2)	Blasting gelatine	·						
	(3)	Ammonia dynamite		(4)	Semi-gelatine							
	Whi	ich one of the following	tunnelling	meth	ods is used for laying	under s	ground sewers ?					
	(1)	Needle beam method	"	(2)	German method							
	(3)	Army method		(4)	English method							
	To a	attain the required shape	e of the tun	ıneI w	e use .							
	(1)	Cutholes (2)	Chisels		(3) Easers	(4)	Trimmers					
	(-/	(2)			(0) Bubers		K11110					

कच्चा कामासाठी जागा /SPACE FOR ROUGH WORK

86.	For	For initial surveys of tunnel, the following activities are involved:									
	(a) Marking portal points with concrete pillars on the ground.										
	(b) Marking tunnel obligatory points on the topographical maps.										
	(c)	Driving lines be	etwee:	n the fixe	d obliga	tory p	ooints.				
	(d)	Preliminary set	ting o	f the turn	nel on tl	he top	ographical surve	ey of In	dian maps.		
	The	correct sequence	of the	e activitie	s are :		0	60			
	(1)	(b), (a), (d), (c)	(2)	(a), (b),	(c), (d)	(3)	(d), (b), (c), (a) (4)	(c), (b), (d), (a)		
87.		O' is a diameter of			eters, th	en the	e thickness of li	ni ng in	mm as per the		
	(1)	72 D	(2)	82 D		(3)	92 D	(4)	102 D		
88.		concentration of should not be m			of the s	size O.S	5 to 5 microns a	djacent	to the working		
	(1)	450 particles/c	m ³		(2)	350	particles/cm ³				
	(3)	250 particles/c	m ³		(4)	150	particles/cm ³				
89.	For	highways, tunnel	ling i	preferre	d if the	open	cut exceeds				
	(1)	10 m depth	(2)	15 m d	epth	(3)	20 m depth	(4)	25 m depth		
90.	In c	om <mark>pres</mark> sed air tur	mellir	ig the vol	lume of	free ai	ir provided is :				
	(1)	10 cuft per seco	nds p	er sq.ft.	of face a	rea					
	(2)	10 m ³ per min.	рег п	n ² of face	area						
	(3)	20 cuft per min	. per	sq.ft. of fa	ace area						
	(4)	6 m ³ per hour j	per m	² of face a	area						
91.	The length of the needle beam used in the needle beam method of tunnelling is usually :										
	(1)	2 m to 4 m	(2)	1.5 m t	o 4.5 m	(3)	6 m to 7 m	(4)	5 m to 6 m		
92.	Indi	ian mu ni cip al s oli	id wa	ste is not		for in	cineration due t	o:			
	(1)	less moisture co	onteni		(2)	higl	h moisture conte	ent			
	(3)	high calorific v	alue		(4)	Les	ser organic cont	ent			

कच्च्या कामासाठी जागा /SPACE FOR ROUGH WORK

(1) (3) Dur (1)	Organic settleable solids Bioflocculated solids	(2) (4)		ganic settleable	solids	
Dur	Bioflocculated solids	(4)	Dice			
			D188	olved solids		
(1)	ing inversion condition :					
(-/	Air temperature decreases with	h altitu	de			
(2)	Air temperature increases with	ı altituc	le			
(3)	Air temperature remains cons	tant				
(4)	Air temperature is zero					
-		d (CPC	B) Air	Quality Index fo	or satisf	actory condition
(1)	301 to 400 (2) 201 to 3	00	(3)	101 to 200	(4)	51 to 100
Whe	en is a photo chemical smog form	ned ?				
(1)	Air stagnation					
(2)	High concentrations of hydroc	arbon a	nd nit	trogen		
(3)	Both (1) and (2)					
(4)	None of these					
	•	al/railv	vay lin	ne, following typ	e of sev	ver appartenances
(1)	Storm water relief work	(2)	Siph	on spillways		
(3)	Jumping weir	(4)	Inve	rted syphon		
Pern	nanent hardness is removed by :			_		
(a)	Lime soda process					
(b)	Boiling					
(c)	Demineralisation process					
(d)	Base exchange process					
Ans	wer options :					
(1)	(a) only	(2)	(b) o	only		
(3)	All of the above	(4)	(a), ((c) and (d) only		
_	(4) As r is in (1) Whe (1) (2) (3) (4) For shot (1) (3) Perr (a) (b) (c) (d) Ans (1)	As per Central Pollution Control Boar is in the range of: (1) 301 to 400 (2) 201 to 3 When is a photo chemical smog form (1) Air stagnation (2) High concentrations of hydroc (3) Both (1) and (2) (4) None of these For taking sewer line below road/can should be provided. (1) Storm water relief work (3) Jumping weir Permanent hardness is removed by: (a) Lime soda process (b) Boiling (c) Demineralisation process (d) Base exchange process Answer options: (1) (a) only	As per Central Pollution Control Board (CPC is in the range of: (1) 301 to 400 (2) 201 to 300 When is a photo chemical smog formed? (1) Air stagnation (2) High concentrations of hydrocarbon at (3) Both (1) and (2) (4) None of these For taking sewer line below road/canal/railw should be provided. (1) Storm water relief work (2) (3) Jumping weir (4) Permanent hardness is removed by: (a) Lime soda process (b) Boiling (c) Demineralisation process (d) Base exchange process Answer options: (1) (a) only (2)	As per Central Pollution Control Board (CPCB) Air is in the range of: (1) 301 to 400 (2) 201 to 300 (3) When is a photo chemical smog formed? (1) Air stagnation (2) High concentrations of hydrocarbon and nit (3) Both (1) and (2) (4) None of these For taking sewer line below road/canal/railway line should be provided. (1) Storm water relief work (2) Siph (3) Jumping weir (4) Inverse Permanent hardness is removed by: (a) Lime soda process (b) Boiling (c) Demineralisation process (d) Base exchange process Answer options: (1) (a) only (2) (b) or significant control board (CPCB) Air is in the range of: (a) Lime soda process (b) Boiling (c) Demineralisation process (d) Base exchange process Answer options: (1) (a) only (2) (b) or significant control board (CPCB) Air is in the range of: (a) Lime soda process (b) Boiling (c) Demineralisation process (d) Base exchange process	As per Central Pollution Control Board (CPCB) Air Quality Index for is in the range of: (1) 301 to 400 (2) 201 to 300 (3) 101 to 200 When is a photo chemical smog formed? (1) Air stagnation (2) High concentrations of hydrocarbon and nitrogen (3) Both (1) and (2) (4) None of these For taking sewer line below road/canal/railway line, following typ should be provided. (1) Storm water relief work (2) Siphon spillways (3) Jumping weir (4) Inverted syphon Permanent hardness is removed by: (a) Lime soda process (b) Boiling (c) Demineralisation process (d) Base exchange process Answer options: (1) (a) only (2) (b) only (3) All of the above (4) (a), (c) and (d) only	As per Central Pollution Control Board (CPCB) Air Quality Index for satisfis in the range of: (1) 301 to 400 (2) 201 to 300 (3) 101 to 200 (4) When is a photo chemical smog formed? (1) Air stagnation (2) High concentrations of hydrocarbon and nitrogen (3) Both (1) and (2) (4) None of these For taking sewer line below road/canal/railway line, following type of sew should be provided. (1) Storm water relief work (2) Siphon spillways (3) Jumping weir (4) Inverted syphon Permanent hardness is removed by: (a) Lime soda process (b) Boiling (c) Demineralisation process (d) Base exchange process Answer options: (1) (a) only (2) (b) only (3) All of the above (4) (a), (c) and (d) only

- 99. As per CPCB, ambient Air Quality Standards in respect of noise during day time and night time for residential area are :
 - (1) 75 dB and 70 dB respectively
- (2) 65 dB and 55 dB respectively
- (3) 55 dB and 45 dB respectively
- (4) 50 dB and 40 dB respectively
- 100. What is the food to micro-organism ratio in an aeration tank having following data? Flow = 1 m/d, MLSS = 2000 mg/L

Influent $BOD_5 = 200 \text{ mg/L}$

Volume of aeration tank=500 m³

- (1) 0.20
- (2) 5.00
- (3) 0.80
- **(4)** 1.25

- o 0 o -

कच्चा कामासाठी जागा /SPACE FOR ROUGH WORK