महाराष्ट्र आमयांत्रिकी (स्थापत्य) सेवा मुख्य परीक्षा - 2012

प्रश्नपुस्तिका क्रमांक BOOKLET No.

Code : **V01**

परिक्षा दि १५ व १६ डिसेंबर २०१2

एकूण प्रश्न :

एकूण गुण: 200

प्रश्नपुस्तिका

स्थापत्य अभियांत्रिकी पेपर – 🛚

वेळ : 2 (दोन) तास

सूचना

(1) सदर प्रश्नपुस्तिकेत 100 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. असा तसेच अन्य काही दोष आढळल्यास ही प्रश्नपृस्तिका समवेक्षकांकडून लगेच बदलून ध्यावी.

आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसरता बॉलपेनने लिहावा.

- परीक्षा-क्रमांक शेवटचा अंक केंद्राची संकेताक्षरे
- वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तरपत्रिकेवरील सूचनेप्रमाणे न विसरता नमृद करावा.
- (4) या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असून त्यांना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैको सर्वात योग्य उत्तराचा क्रमांक उत्तरपत्रिकेवरील सूचनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नमूद करावा. अशा प्रकारे उत्तरपत्रिकेवर उत्तरक्रमांक नमूद करताना तो संबंधित प्रश्नक्रमांकासमोर छायांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.
- (5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांची उत्तरे द्यावीत. घाईमूळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडविणे श्रेयस्कर आहे पण एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालविता पुढील प्रश्नाकडे वळावे. अशा प्रकारे शेवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठरेल.
- (6) उत्तरपत्रिकेत एकदा नमूद केलेले उत्तर खोडता येणार नाही. नमूद केलेले उत्तर खोड्न नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
- (7) प्रस्तुत परीक्षेच्या उत्तरपत्रिकांचे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच ''उमेदवाराने वस्तुनिष्ठ बहुपर्यायी स्वरूपाच्या प्रश्नांची अचुक उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अन्यका त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण कजा करण्यात येतील''.

ताकीद

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपर्यंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपर्यंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशुध कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82'' यातील तरतुदीनुसार तसेच प्रजलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनिधकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगांच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरुद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

पुढोल सूचना प्रश्नपुस्तिकेच्या अंतिम पृष्ठावर

सूबनेकि

	fixed star, is known as (1) Celestial Survey	(2)	Astrological Survey	
	(3) Heaven Survey	(4)	Astronomical Survey	
	(5) 1100/01/04/05			
2.	If the radius of simple circular cu straight lines is 120°, the tangent		·	ween two
	120° 100 10		. &	
	(1) 173·105 m	(2)	174·305 m	
	(3) 173·205 m	(4)	175·050 m	
3.	In the change point procedure, change (1) the initial position of dumpy large (2) the portion of staff where inst	level.	. P.	9"
3.	 (1) the initial position of dumpy legislation (2) the portion of staff where instant (3) the final position of dumpy legislation (3) 	level. trum <mark>ent</mark> is	. P.	
3. 	 (1) the initial position of dumpy legislation (2) the portion of staff where instant (3) the final position of dumpy legislation 	level. trument is vel.	shifted.	nd points
	 (1) the initial position of dumpy let (2) the portion of staff where instant (3) the final position of dumpy let (4) None of the above The process of establishing number	level. trument is vel.	shifted.	nd points
	 (1) the initial position of dumpy le (2) the portion of staff where inst (3) the final position of dumpy le (4) None of the above The process of establishing number on ground is known as	level. trument is vel. of intermed	shifted. liate points between two fixed e	nd points
	 (1) the initial position of dumpy let (2) the portion of staff where instant (3) the final position of dumpy let (4) None of the above The process of establishing number on ground is known as (1) Ranging 	level. trument is vel. of intermed (2) (4)	shifted. liate points between two fixed e Offsets Auxiliary points	nd points
4.	 the initial position of dumpy let the portion of staff where instant the final position of dumpy let None of the above The process of establishing number on ground is known as Ranging Station points 	level. trument is vel. of intermed (2) (4)	shifted. liate points between two fixed e Offsets Auxiliary points	nd points

(2)

Reservoir

Flat slope

SPACE FOR ROUGH WORK

Steep slope

Hill

(1)

<i>.</i>	In g	eodetical observations, the corr	ection for r	erraction is
	(1)	subtractive to both the angle	of elevation	and the angle of depression
	(2)	additive to both the angle of e	elevation ar	nd the angle of depression
	(3)	subtractive to the angle of ele	vation and	additive to the angle of depression
	(4)		•	btractive to the angle of depression
8.	A ro	ad section of length 2 km scale	es 9 cm on	a vertical photograph. The focal length
	of th	e camera is 180 mm. If the ter	rain is fair	ly level, then the flying height will be
	(1)	40 m	(2)	4000 m
	(3)	40 km	(4)	400 km
9.		process of determining the loc e table is	ation of th	e station (on the map) occupied by the
	(1)	Intersection	(2)	Two-point problem
	(3)	Resection	(4)	Traversing
10.		area of irregular plotted figured as Pentagraph	re can be e	easily determined by using instrument Planimeter
	(3)	Subtense bar	(4)	Vernier
11.		ase of a truly vertical phot	ographic	survey, which of the following points
	I.	Principal point		
	II.	Isocentre		11.
	III.	Plumb point		
	(1)	I and II only	(2)	I and III only
	(3)	II and III only	(4)	I, II and III
12.	Mea	surement of discharge of river	usually for	ms a part of
	(1)	Topographic surveying	(2)	Hydrographic surveying
	(3)	Geodetic surveying	(4)	Route surveying
13.	A to	tal station is an instrument co	nsisting of	the combination of
	(1)	prismatic compass, theodolite	and dump	y level
	(2)	auto level, tacheometer and c	ompass	
	(3)	electronic theodolite and elect	ronic dista	nce meter
	(4)	digital planimeter with auto l	evel	

	743	The second secon		(0)	Th-15-1
	(1)	Detailed estimate		(2)	Preliminary estimate
	(3)	Plinth area estimate		(4)	None of these
15.	Whi	ile computing masonry w	ork, no ded	uction	s are generally made for
	(1)	opening each up to 0.10) sq. m		
	(2)	ends of beam up to 0-05	sq. m		(02)
	(3)	bed plates and wall pla	tes up to 10) cm	
	(4)	All the above			
	•			_	
16.	The	estimated quantity of ce	ment requi	red pe	r m ³ in a compacted cement concrete o
٠	1::	2:4 nominal mix is	_		
	(1)	305 kg	-	(2)	330 kg
	(3)	285 kg	*4	(4)	255 kg
					5
					- 100
17.	Ide	ntity correct statements f	rom the fol	lowing	- 100
17.	Ider a.	-		_	- 100
17.		Centre line method is the walls.	he most con	nmon	: method for calculating the quantities o
17.	a.	Centre line method is the walls. Centre line method is curved in plan.	he most cor suitable fo	nmon r dete	1:
17.	a. b.	Centre line method is the walls. Centre line method is curved in plan. Out-to-out and in-to-in	he most cor suitable fo	nmon r dete	method for calculating the quantities or calculating the quantities of walls which are
117.	a. b.	Centre line method is the walls. Centre line method is curved in plan. Out-to-out and in-to-in quantities of walls.	he most cor suitable fo	nmon r dete s the	method for calculating the quantities or rmining quantities of walls which are most common method for calculating
17.	a. b. c	Centre line method is the walls. Centre line method is curved in plan. Out-to-out and in-to-in quantities of walls. a and b	he most cor suitable fo	nmon r dete s the (2)	method for calculating the quantities of method for calculating the quantities of walls which are most common method for calculating a and c
	a. b. c (1) (3)	Centre line method is the walls. Centre line method is curved in plan. Out-to-out and in-to-in quantities of walls. a and b a only	he most con suitable fo method i	nmon r dete s the (2) (4)	method for calculating the quantities of method for calculating of walls which are most common method for calculating a and c b and c
18.	a. b. c (1) (3)	Centre line method is the walls. Centre line method is curved in plan. Out-to-out and in-to-in quantities of walls. a and b a only	ne most con suitable fo method in	nmon r dete s the (2) (4)	method for calculating the quantities of method for calculating the quantities of walls which are most common method for calculating a and c
	a. b. c (1) (3) Anr a pr	Centre line method is the walls. Centre line method is curved in plan. Out-to-out and in-to-in quantities of walls. a and b a only The wall income from a proper revailing rate of 12-5% in	ne most con suitable fo method in	nmon r dete s the (2) (4)	method for calculating the quantities of method for calculating most common method for calculating a and c b and c
	a. b. c (1) (3) Anr a pr (1)	Centre line method is the walls. Centre line method is curved in plan. Out-to-out and in-to-in quantities of walls. a and b a only	ne most con suitable fo method in	nmon r dete s the (2) (4)	method for calculating the quantities of method for calculating of walls which are most common method for calculating a and c b and c

19.	can	roperty whose owner is in the absolu utilise the same in any manner he t. and local authorities is known as	_		
	(1)	Leasehold property	(2)	Saleable property	
	(3)	Freehold property	· (4)	Absolute property	
20.	Whi noti	ich of the following documents w	ill <i>na</i>	t be required for drafting	the tender
	(1)	Nature of work and its location			
	(2)	Estimated cost of the work			
	(3)	Mode of submitting tender			
	(4)	Schedule 'A' of the proposed work			
21.	(1) (3)	0.5 to 0.7 1.2 to 1.4	(2) (4)	0.9 to 1.0 1.8 to 2.0	w.
22	Asse	ertion (A). Rate analysis is carrestructure or building.		ut to work out the actual	cost of the
	Rea	son (R) : Rate analysis is carri	ed ou	t to revise the schedule of r	ates.
	Stat				
	NO ULA	te whather			
	(1)	te whether Both A and R are true	(2)	A is true and R is false	-
	(1) (3)	Both A and R are true	(2) (4)	A is true and R is false Both A and R are false	
23.	(3)	Both A and R are true	(4)	Both A and R are false	
23.	(3)	Both A and R are true A is false and R is true	(4)	Both A and R are false	

A			7	V01
24.		n improvement of Indian Star sification system was	ndard Soil Classification system over U	nified Soil
	(1)	division of fine-grained into f	our groups and inclusion of peat.	
	(2)	division of fine-grained soil p	ortion into six groups.	
	(3)	division of fine-grained soil p	ortion into six groups and inclusion of pe	eat.
	(4)	division of fine-grained soil b	ased on compressibility.	
			(Q-):	
25.		maximum vertical stress occurse corresponding to value of $\frac{r}{2}$	rs when the angle made by the polar ra equal to	y attains a
	(1)	39° 13′ 53·5″ and 0·817	(2) 39° 13′ 53·5″ and 0·488	
	(3)	33° 33′ 33″ and 0·817	(4) 33° 33′ 33″ and 1·000	
 26.		33° 33′ 33″ and 0.817 shear strength of loamy soil d		0
 26.				0
 26.	The	shear strength of loamy soil d		, O-
26 .	The (1)	shear strength of loamy soil d	lepends upon	0

Newmark's influence chart **(1)**

Spring analogy (2)

Isobar diagrams

(4)Pressure bulb

Bearing capacity of soil is not influenced by 28.

> shape and depth of footing **(1)**

position of water table (2)

overcoming load on footing

(4)type of soil

SPACE FOR ROUGH WORK

29.	Lar	ge movement of retainin	g structure is requ	uired to produce.	
	(1)	active earth pressure			
	(2)	passive earth pressure			
	(3)	both active and passiv	e earth pressures	-1	
	(4)	at rest pressure			·
30.		en the allowable soil pro dation is	essure is low or bu	ilding loads are heav	y, suitable type of
	(1)	Strap footing	(2)	Raft footing	
	(3)	Spread footing	(4)	Combined footing	
1 =					
31.	effe The grav	ormally consolidated clay ctive overburden pressur laboratory tests on this city of '3' and liquid limi rly equal to	re before an <mark>d af</mark> ter strata indicated : r	construction was 25 natural moisture cont	KPa and 250 KPa. ent of 50%, specific
	(1)	0·4 m	(2)	0·8 m	
	(3)	1·6 m	(4)	2.0 m	
					
32.	The	allowable load on a pile	rom pile load te	st is calculated as	
	(1)	50% load corresponding	g to a settlement	of 10% pile diameter	
	(2)	$\frac{2}{3}$ of load corresponding	g to a settlement	of 12 mm	_ '
	(3)	50% load corresponding	g to a settlement	of 25 mm	
	(4)	lesser of (1) and (2)			
33.	(1)	oum <mark>atic cassion</mark> s are pre a is than slower	it can be removed (2)	d. faster	into the excavated
	(3)	initially faster	(4)	initially slower	

	Sur	face tension is a phenomenon due	to	
	(1)	cohesion only		0
	(2)	viscous force		
	(8)	adhesion between liquid and soli	d molec	ules
	(4)	difference in magnitude between	the for	ces due to adhesion and cohesion
35.		object weighs 100 N in air and 7 cific gravity of the object is	5 N in	water when fully submerged in it. The
	(1)	4.0	(2)	4-5
	(3)	2.5	(4)	1.25
36.	A fl	ow of fluid has diverging straight	streaml	ines. If the flow is steady, the flow
	(1)	is a uniform flow with local acce	leration	
	(2)	has convective normal accelerati	on	
	(3)	has convective tangential acceler	ation	
	(4)	has convective normal as well as	tangen	tial accelerations 0.20 m to 0.40 m. The ratio of the new
	(4)	has convective normal as well as head over a 90° V-notch increase charge to the original discharge is	tangen	
37.	(4) The	has convective normal as well as head over a 90° V-notch increase charge to the original discharge is	s tangen	0·20 m to 0·40 m. The ratio of the new
	(4) The disc (1) (3)	has convective normal as well as head over a 90° V-notch increase tharge to the original discharge is 1.414	es from (2) (4)	0·20 m to 0·40 m. The ratio of the new
37.	(4) The disc (1) (3)	has convective normal as well as head over a 90° V-notch increase tharge to the original discharge is 1.414	es from (2) (4)	0·20 m to 0·40 m. The ratio of the new 2·000 more than 4·000
	(4) The disc (1) (3) For	has convective normal as well as head over a 90° V-notch increase tharge to the original discharge is 1.414 4.000 a given open channel carrying a converse of the converse of	es from (2) (4) certain c	0.20 m to 0.40 m. The ratio of the new 2.000 more than 4.000 lischarge, the critical depth depends on
38.	(4) The disc (1) (3) For (1) (3)	has convective normal as well as head over a 90° V-notch increase tharge to the original discharge is 1.414 4.000 a given open channel carrying a control the geometry of the channel	es from (2) (4) certain (2) (4)	0.20 m to 0.40 m. The ratio of the new 2.000 more than 4.000 discharge, the critical depth depends on the viscosity of the liquid the longitudinal slope of the channel
38.	(4) The disc (1) (3) For (1) (3)	has convective normal as well as head over a 90° V-notch increase tharge to the original discharge is 1.414 4.000 a given open channel carrying a control the geometry of the channel the roughness of the channel	(2) (4) certain (2) (4) ures on	0.20 m to 0.40 m. The ratio of the new 2.000 more than 4.000 hischarge, the critical depth depends on the viscosity of the liquid the longitudinal slope of the channel
38.	(4) The disc (1) (3) For (1) (3) In f	has convective normal as well as head over a 90° V-notch increase tharge to the original discharge is 1.414 4.000 a given open channel carrying a company the geometry of the channel the roughness of the channel flow through pipe bends, the press	es from (2) (4) certain (2) (4) ures on	0.20 m to 0.40 m. The ratio of the new 2.000 more than 4.000 hischarge, the critical depth depends on the viscosity of the liquid the longitudinal slope of the channel
	(4) The disc (1) (3) For (1) (3) In f (1)	has convective normal as well as head over a 90° V-notch increase tharge to the original discharge is 1.414 4.000 a given open channel carrying a control the geometry of the channel the roughness of the channel channel the roughness of the channel chann	es from (2) (4) certain (2) (4) ures on center o	0.20 m to 0.40 m. The ratio of the new 2.000 more than 4.000 hischarge, the critical depth depends on the viscosity of the liquid the longitudinal slope of the channel

- 40. The fluid flow in the model and the prototype will be dynamically similar if
 - (1) the forces in the two systems are same
 - (2) the two systems are geometrically similar
 - (3) the two systems are kinematically similar
 - (4) the forces at similar points in the two systems have same ratio throughout the flow field
- 41. The main function of the surge tank is to
 - (1) restrict the water hammer effects to small length of penstock
 - (2) provide a free water surface near turbines
 - (3) act as a reservoir
 - (4) protect the penstock from bursting
- 42. In all reaction turbines, the following conditions should be satisfied for maximum efficiency:
 - (1) The velocity of whirl at entrance must be zero
 - (2) The velocity of flow at outlet must zero
 - (3) Velocity of whirl at outlet must be zero
 - (4) Velocity of flow at entrance must be zero
- 43. In centrifugal pump, the inlet angle will be designed to have
 - (1) relative velocity vector in radial direction
 - (2) absolute velocity vector in radial direction
 - (3) velocity of flow to be zero
 - (4) peripheral velocity to be zero

			3-1		YUT
44.	In a	hydrological cycle, the average a	esidence	time of water in the global	
	(1)	atmospheric moisture is larger			
	(2)	oceans is smaller than that of t		•	
	(3)	rivers is larger than that of the	_		
	(4)	oceans is larger than that of the			
45 .	An	sohyet is a line joining points ha	ving		
	(1)	equal evaporation value			
	(2)	equal barometric pressure			
	(3)	equal height above the MSL		(0-)	
	(4)	equal rainfall depth in a given	duration		
<u>46.</u>	Ant	cyclone is a		•	
	(1)	low pressure zone that occurs in	a the nor	thern hemisphere only	
	(2)	high pressure zone with modera	ate winds		
	(3)	zone of low pressure with clocks	wise wind	is in the northern hemisphere	
	(4)	zone of low pressure with anticl	lockwise	winds in the northern hemisphe	re
 47.	Ĥvć	rograph is a graph which shows	the varis	tion of discharge with	
	- (1)	rainfall	(2)	time	
	\-				
	(3)	runoff coefficient	(4)	rainfall excess	
 48.		runoff coefficient e maximum depth of a 50 years –	(4)		50 mm,
48.	If th		(4) - 15h rain	fall depth at Bhubaneshwar is 2	50 mm,
48.	If th	e maximum depth of a 50 years –	(4) - 15h rain	fall depth at Bhubaneshwar is 2	60 mm,
48.	If th	e maximum depth of a 50 years – 50 year-3h-maximum rainfall de	(4) 15h rain oth at the	fall depth at Bhubaneshwar is 2 same place is	60 mm,
	If the (1) (3)	e maximum depth of a 50 years – 50 year-3h-maximum rainfall de < 260 mm = 260 mm	(4) - 15h rain oth at the (2) (4)	fall depth at Bhubaneshwar is 2 same place is > 260 mm None of the above	
	If the (1) (3)	te maximum depth of a 50 years—50 year-3h-maximum rainfall depth of a 50 years—50 year-3h-maximum rainfall depth of a 50 years—60	(4) 15h rain the (2) (4) (4)	fall depth at Bhubaneshwar is 2 same place is > 260 mm None of the above 6 cm/h in winter season. If a rai	nfall of
	If the (1) (3)	e maximum depth of a 50 years – 50 year-3h-maximum rainfall de < 260 mm = 260 mm	(4) 15h rain the (2) (4) (4)	fall depth at Bhubaneshwar is 2 same place is > 260 mm None of the above 6 cm/h in winter season. If a rai	nfall of
	If the the (1) (3) A can be a	te maximum depth of a 50 years—50 year-3h-maximum rainfall depth of a 50 years—50 year-3h-maximum rainfall depth of a 260 mm = 260 mm atchment was found to have a \$\phi\$-in occurs in that season at a uniform	(4) 15h rain th at the (2) (4) adex of 0 m rate in	fall depth at Bhubaneshwar is 2se same place is > 260 mm None of the above 6 cm/h in winter season. If a rain a 6 h storm, the resulting direct	nfall of
	If the the (1) (3) A car	te maximum depth of a 50 years—50 year-3h-maximum rainfall depth of a 50 years—50 year-3h-maximum rainfall depth of a 50 years—60	(4) 15h rain (2) (4) (4) adex of 0 m rate in (2)	fall depth at Bhubaneshwar is 2 same place is > 260 mm None of the above 6 cm/h in winter season. If a rai	nfall of
49.	If the the (1) (3) A ca 3 cm is (1) (3)	te maximum depth of a 50 years—50 year-3h-maximum rainfall depth of 260 mm = 260 mm the technique of the control of the contr	(4) 15h rain (2) (4) (4) adex of 0 (2) (material (2) (4)	fall depth at Bhubaneshwar is 20 same place is > 260 mm None of the above 6 cm/h in winter season. If a rain a 6 h storm, the resulting direct - 0.6 cm 6.6 cm	nfall of
	If the the (1) (3) A ca 3 cm is (1) (3)	te maximum depth of a 50 years — 50 year-3h-maximum rainfall depth of a 50 years — 260 mm = 260 mm tchment was found to have a \$\phi\$-in occurs in that season at a unifor \$0.6 cm	(4) 15h rain (2) (4) (4) adex of 0 (2) (material (2) (4)	fall depth at Bhubaneshwar is 20 same place is > 260 mm None of the above 6 cm/h in winter season. If a rain a 6 h storm, the resulting direct - 0.6 cm 6.6 cm	nfall of

soil and plant factors.

PET is same as the consumptive use of an irrigated crop. (2)

Decrease in PET of an area on the basis of mean annual value reflects an increase in runoff.

The ratio of PET to lake evaporation is always greater than unity.

SPACE FOR ROUGH WORK

- 51. The process by which plants dissipate water from the surface of their leaves, stalks and trunks in known as
 - evaporation **(1)**

(2)evapo-transpiration

(3) delta

- (4)conjunctive use
- Match the following lists: 52.

List I (Plot of)

- Accumulated precipitation vs time in chronological order
- b. Rainfall intensity vs time
- C. Stream flow vs time in chronological order
- Steam discharge vs percent time d. the flow is equalled or exceeded
- d
 - b c a I IV TT
- **(1)** Ш (2)IV II Ш Ι
- II · IV I III (3)
- II IV III **(4)** I

- List II (Name)
- I. Hydrograph
- II. Hyetograph
- Flow-duration curve III.
- Mass curve of rainfall

- If a soil has an infiltration capacity of fe, actual infiltration rate f is given by
 - $f < f_c$ when i < f

(2) f = i when $i > f_c$

 $f = f_c$ when $i < f_c$

(4) $f < f_c$ when i > f

(where i = Rainfall intensity in above options)

- The chemical that is found to be most suitable as water evaporation inhibitor is 54.
 - ethyl alcohol (1)

methyl alcohol

cetyl alcohol (3)

- butyl alcohol
- A peak ordinate of a 4-h unit hydrograph for a catchment is 80 m³/s. The peak ordinate 55. of an 8-h unit hydrograph for the same catchment will be
 - (1) $> 80 \text{ m}^3/\text{s}$

 $= 80 \text{ m}^3/\text{s}$

(3). $< 80 \text{ m}^3/\text{s}$

(4) Data inadequate

Conjunctive use of water in a basin means

56.

	(1)	the sum of evapo-transpiration metabolism.	end th	e amount of water used up in plant
	(2)	combined use of surface and gro	und wat	er Megniirres
	(3)	combined use of water for irriga		
	(4)	the sum of evapo-transpiration		
 7.	The	moisture content of the soil after	free drai	nage removes most of the gravity water
		nown as		
	(1)	Wilting point	(2)	Available moisture
	(3)	Saturation capacity	(4)	Field capacity
8.	If th	ne duty on crop is reduced the irri	igated ar	rea will be
	(1)	less	(2)	more
	(3)	does not depend on duty	(4)	None of the above
9.		the irrigation of a crop, the base p	period is	100 days and delta is 150 cm. Then the
	(1)	5.76 (2) 576	(3)	0.576 (4) 13.06
		rape of the quantity of water sig	37 1 -11 113 1.	
		vater actually delivered in the fiel water conveyance efficiency water use efficiency		he root zone of the crop to the quantity on as water application efficiency water storage efficiency
	of w (1) (3)	vater actually delivered in the fiel water conveyance efficiency	(2) (4) p is defination only	wn as water application efficiency water storage efficiency led as y soils and plant leaves
61.	of w (1) (3) Con (1) (2) (3) (4) Whi	water actually delivered in the fiel water conveyance efficiency water use efficiency sumptive use for a particular crop water used by plant in transpire water used in evaporation from water used by plant in transpire None of the above ich of the statements given below the check-basin method of irrigation the ridges interfere with the moconsiderable land is wasted by rethe surface drainage is unhinder	d is know (2) (4) p is defination only adjacent ation and are correct on vement ridges and	water application efficiency water storage efficiency led as y soils and plant leaves l evaporation also ect? of tractor drawn implements. d lateral channels.

63.	The	maximum application rate of sprin	klers is limited by	9 5
	(1)	the infiltration capacity of the soi	l	
1	(2)	the prevailing wind velocity		
	(3)	the quantity of water available		
	(4)	the prevailing humidity and radia	ition	
64.	Lea	ching is the process in which		
	(1)	water table is lowered by using p	umps	20
	(2)	land is flooded with adequate dep	th of water to reduc	e salts in the top layer
	(3)	land is flooded with adequate dep	th of water to reduce	salts in the bottom layer
	(4)	None of the above		
65.		irrigant has the ionic concentrations pectively. The Sodium Adsorption R		
	(1)	0.10 (2) 3.33	(3) 10	(4) 1-66
66.	A la	and is known as waterlogged when		- 1
	(1)	gravity drainage has ceased	1	.0.
	(2)	permanent wilting point is reache	d	
	(3)	the soil becomes completely satur		
	(4)	capillary fringe reaches the root z	one of the plants	
67.	An	aqueduct means	All .	
	(1)	passing canal below the drainage		
	(2)	passing canal below the road		1
	(3)	passing the drain through the car	nal	
	(4)	passing the canal over the draina		
68.		uplift pressure is reduced h its drainage pipe system is provid	- -	m when a drainage gallery
	(1)	at all levels below the upstream l		
	(2)	at all levels below the drainage g		
	(3)	at all levels below the downstream	-	
	(4)	at the foundation level only	(E.)	

- 69. In planning surveys for highways, which of the following studies is concerned with collection of details about the trend of population growth?
 - (1) Engineering studies
- (2) Economic studies

(3) Financial studies

- (4) Traffic studies
- 70. Which of the following statements gives the most suitable meaning of highway alignment?
 - (1) Fixing the direction of highway
 - (2) Deciding the radius of horizontal and vertical curves
 - (3) Determining the gradient of volley and summit curves
 - (4) Layout of the centre line of the highway on ground
- 71. Which of the following values is recommended by IRC as longitudinal friction coefficient for calculation of the stopping sight distance?
 - (1) 0.05 to 0.10

(2) 0.15 to 0.20

(8) 0.25 to 0.30

- (4) 0.35 to 0.40
- 72. Which of the following terms represents cross slope provided to the road surface to drain off the rainwater?
 - (1) Shoulder

(2) Camber

(3) Kerb

- (4) Drain
- 73. Width of the carriageway for single lane as standardised by IRC is
 - (1) 2·44 m

(2) 2·50 m

(3) 3.50 m

- (4) 3.75 m
- 74. The mechanical widening of pavement required on horizontal curve along a two traffic lane road is given by which of the following equations?
 - $(1) \quad \mathbf{W}_{m} = l^2/2\mathbf{R}$

 $(2) \quad W_{\mathbf{m}} = \ell^2 / \mathbf{R}$

(3) $W_m = 2l^2/R$

 $(4) \quad \mathbf{W_m} = l^2 / \sqrt{\mathbf{R}}$

SPACE FOR ROUGH WORK

75.		s not desirable to provide transi ves ?	ition cur	ve on which of the following types of
	(1)	Summit curves	(2)	Valley curves
	(3)	Sharp curves	(4)	Steep curves
76.		traffic engineering, which of the	following	g information is collected by road side
	(1)	Origin and destination data	(2)	Traffic capacity data
	(3)	Traffic volume data	(4)	Parking studies
		1		
77.	CBI	R test is developed to evaluate w	hich of t	he fo <mark>llo</mark> wing ?
	(1)	Shearing resistance of soil	(2)	Modulus of subgrade reaction
	(3)	Stability of soil subgrade	(4)	Stress - strain relationship of soil
	out (1)	Abrasion test	(2)	Crushing test
	(3)	Impact test	(4)	Soundness test
				7
79.		delines of design of flexible paven codes?	n ent a re	recommended in which of the following
	(1)	IRC 29	(2)	IRC 37
	(3)	IRC 58	(4)	IRC 86
		807 9P /		-
80.		per IRC reco <mark>m</mark> mendations for des ement concrete used in the paver	_	ncrete pavements, the flexural strength ould <i>not</i> be less than
	(1)	6 kg/cm ²	(2)	24 kg/cm ²
	(3)	30 kg/cm ²	(4)	40 kg/cm ²
	,-,			

	the roadway to the other side is known		Channel
	(1) Underground drain	(2)	
	(3) Aqueduct	(4)	Culvert
32.	If afflux is more, scour depth		
	(1) will be less	(2)	will be more
	(3) will have no effect on it	(4)	None of the above
33.	IRC recommendations for minimum	width of	footpath on bridge is
	(1) 1.0 m (2) 1.5 m	(3)	2·0 m (4) 2·5 m
34.	IRC standard loading for bridge desi	gns are	
	(1) Class A, Class B, Class AB and	l Class 70)-R
	(2) Class A, Class B, Class AB and	l Class 90	O-R
	(3) Class A, Class B, Class BB and	Class 70)-R
	(4) Class A, Class B, Class AA and	Class 70)-R
35.	The type of bearing used on a bridge	e, depend	s on
	(1) Amount of movement of the bri	idge ends	
	(2) Temperature variations		
	(3) Load carried		The state of the s
	(4) All of the above		
86.	Abutment piers are provided in mul	tiple span	
86.	Abutment piers are provided in mult (1) Arch bridges	tiple span (2)	
86.			
	 (1) Arch bridges (3) Temporary bridges The difference between the designed of crown of road at its lower point, we 	(2) (4) H.F.L. a	Submersible bridges
	 (1) Arch bridges (3) Temporary bridges The difference between the designed of crown of road at its lower point, was 	(2) (4) I H.F.L. s hether on	Submersible bridges Suspension bridges allowing for afflux, if any, and the level the bridges or its approaches, is known
	 (1) Arch bridges (3) Temporary bridges The difference between the designed of crown of road at its lower point, was (1) Head room 	(2) (4) I H.F.L. a hether on (2)	Submersible bridges Suspension bridges allowing for afflux, if any, and the level the bridges or its approaches, is known. Free room
	 (1) Arch bridges (3) Temporary bridges The difference between the designed of crown of road at its lower point, was 	(2) (4) I H.F.L. s hether on	Submersible bridges Suspension bridges allowing for afflux, if any, and the level the bridges or its approaches, is known
86. 87.	 (1) Arch bridges (3) Temporary bridges The difference between the designed of crown of road at its lower point, was (1) Head room 	(2) (4) I H.F.L. a hether on (2) (4)	Submersible bridges Suspension bridges allowing for afflux, if any, and the level the bridges or its approaches, is known free room Free board
87.	 Arch bridges Temporary bridges The difference between the designed of crown of road at its lower point, was Head room Highest water level 	(2) (4) I H.F.L. a hether on (2) (4)	Submersible bridges Suspension bridges allowing for afflux, if any, and the level the bridges or its approaches, is known free room Free board
87.	 Arch bridges Temporary bridges The difference between the designed of crown of road at its lower point, was Head room Highest water level Culvetts are provided for linear wate 6 m 9 m 	(2) (4) I H.F.L. a hether on (2) (4) erway up (3)	Submersible bridges Suspension bridges allowing for afflux, if any, and the level the bridges or its approaches, is known free room Free board to maximum of 12 m (4) 15 m
87.	 Arch bridges Temporary bridges The difference between the designed of crown of road at its lower point, was Head room Highest water level Culvetts are provided for linear wate 6 m 9 m 	(2) (4) I H.F.L. a hether on (2) (4) erway up (3)	Submersible bridges Suspension bridges allowing for afflux, if any, and the level the bridges or its approaches, is known. Free room Free board to maximum of
87.	(1) Arch bridges (3) Temporary bridges The difference between the designed of crown of road at its lower point, was (1) Head room (3) Highest water level Culverts are provided for linear wate (1) 6 m (2) 9 m A thin wall used as a shield or protest	(2) (4) I H.F.L. a hether on (2) (4) erway up (3)	Submersible bridges Suspension bridges allowing for afflux, if any, and the level the bridges or its approaches, is known free room Free board to maximum of 12 m (4) 15 m ainst scouring action of stem is called
87.	(1) Arch bridges (3) Temporary bridges The difference between the designed of crown of road at its lower point, was (1) Head room (3) Highest water level Culverts are provided for linear wate (1) 6 m (2) 9 m A thin wall used as a shield or prote (1) Baffle wall (3) Curtain wall	(2) (4) I H.F.L. a hether on (2) (4) erway up (3) ection aga	Submersible bridges Suspension bridges allowing for afflux, if any, and the level the bridges or its approaches, is known free room Free board to maximum of 12 m (4) 15 m inst scouring action of stem is called Dwarf wall
87.	 Arch bridges Temporary bridges The difference between the designed of crown of road at its lower point, was Head room Highest water level Culverts are provided for linear wate 6 m 9 m A thin wall used as a shield or prote Baffle wall 	(2) (4) I H.F.L. a hether on (2) (4) erway up (3) ection aga	Submersible bridges Suspension bridges allowing for afflux, if any, and the level the bridges or its approaches, is known free room Free board to maximum of 12 m (4) 15 m inst scouring action of stem is called Dwarf wall

91.	Which air pollutant is not included in National Ambient Air Quality Standards 2009?						
	(1)	Ozone	(2)	Benzene			
	(3)	Mercury	(4)	Arsenic			
				X =			
92.		fire demand for a population 668 : 1990 is	of 1.5	lakh as per the recomm	endation of		
	(1)	1800 litre/min	(2)	3600 litre/min			
	(3)	5400 litre/min	(4)	7200 litre/min			
93.	a. b. c.	b. Backwashing is carried out by air scouring followed by water washing.					
	Whi	Which of these are related to slow sand filters?					
	(1)	a and b	.(2)	a, b and e			
	(3)	a and c	(4)	b and c			
94.	Wha	What are the Ambient Air Quality Standards in respect of noise in daytime for industrial and commercial areas respectively?					
U-ZI	indu	strial and commercial areas res	pectively	?	•		
U-X1	indu (1)	strial and commercial areas res 75, 65 dB(A) Leq.	pectively (2)	? 75, 70 dB(A) Leq.	-		
U-X1			- 10		-		
95.	(1) (3) The Initi	75, 65 dB(A) Leq. 75, 55 dB(A) Leq. following data pertain to a sew al dissolved oxygen = 6 mg/L dissolved oxygen after 5 days attion ratio = 0.02	(2) (4) age samp = 3.5 mg/	75, 70 dB(A) Leq. 65, 55 dB(A) Leq. le at 20°C :			
84	(1) (3) The Initi	75, 65 dB(A) Leq. 75, 55 dB(A) Leq. following data pertain to a sewer al dissolved oxygen = 6 mg/L al dissolved oxygen after 5 days:	(2) (4) age samp = 3.5 mg/	75, 70 dB(A) Leq. 65, 55 dB(A) Leq. le at 20°C :			
84	(1) (3) The Initi	75, 65 dB(A) Leq. 75, 55 dB(A) Leq. following data pertain to a sew al dissolved oxygen = 6 mg/L dissolved oxygen after 5 days attion ratio = 0.02	(2) (4) age samp = 3.5 mg/	75, 70 dB(A) Leq. 65, 55 dB(A) Leq. le at 20°C :			

96.	Which of the following is attached growth process used for waste water treatment?						
	(1)	Rotating Biological Contactor	(2)	Activated Sludge Process			
	(3)	Aerated Lagoon	(4)	Waste Stabilization Pond			
97.	Whi	ich of the following pairs is/are cor	rectly :	matched ?			
	a.	Trickling filter - Attached growth	anaer	obic treatment system			
	b.	Activated sludge process - Suspen	nded gr	owth aerobic treatment syst	æm		
	c.	Oxidation pond - Suspended grow	vth aer	obic treatment system			
	d.	Oxidation ditch - Modified activa	ted slu	dge process			
	(1)	a, b and c	(2)	b, c and d			
	(3)	b and d	(4)	a, b, c and d			
		·					
98.	Factors that influence sedimentation process are						
-	(1)	size, viscosity, density and tempe	rature	of water			
	(2) surface overflow rate, detention time						
	(3) inlet and outlet characteristics, depth of settling						
	(4)	All the above		0.			
				100			
99.	Which of the following statements are correct?						
	a. The burning of gasoline fuel emits carbon monoxide.						
	b. Sulphur dioxide is formed from coal burning.						
	c. The burning of tyres results in hydrocarbons.						
	(1)	a and b	(2)	a and c			
	(3)	b and c	(4)	a, b and c			
							
100.	What is the standard for E , $coli$ as per Drinking Water Quality Standards IS: 10500?						
	(1)	10/100 mL	(2)	5/100 mL			

सूचना - (पृष्ठ 1 वरुन पुढे....)

- प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (रफ वर्क) करावे, प्रश्नपुस्तिकेव्यतिरिक्त उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82'' यातील तरत्दीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षांच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- सदर प्रश्नपान साठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपानका स्वतः बनबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षा कक्षाबाहेर जाण्यापूर्वी उमेदवाराने जापल्या उत्तरपत्रिकेचा भाग-1 सम्वेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

नमुना प्रश्न

Pick out the correct word to fill in the blank:

Q. No. 201.	I congratulate you	your grand success.		
	(1) for (2) at	(3) on (4) about		

े ह्या प्रश्नाचे योग्य <mark>उत्तर "(3) on" असे आहे. त्या</mark>मुळे या प्रश्नाचे उत्तर "(3)" तर्डल. यास्तव खालीलप्रमाणे प्र.क. 201 समोरील उत्तर-क्रमांक "3" हे वर्तुळ पूर्णपणे छायांकित करून दाखविणे आवश्यक आहे.

प्रश्न क्र. 201. (1) (2)

अशा पद्धतीने प्रस्तुत प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाचा तुमचा उत्तरक्रमाक हा तुम्हाला स्वतंत्ररीत्या परविलेल्या उत्तरपत्रिकेवरील त्या त्या प्रश्नक्रमांकासमोरील संबंधित वर्तृळ पूर्णपणे छायांकित करून दाखवावा. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पेन्सिल वा शाईचे पेन वापरू नये.

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

परीक्षेचे नांव : महाराष्ट्र अभियांत्रिकी सेवा (स्थापत्य), गट- ब (मुख्य)- परीक्षा -२०१२ परीक्षेचा दिनांक: १५ व १६ डिसेंबर,२०१२ विषय : (प्रश्नपत्रिका क्र. ३) स्थापत्य अभियांत्रिकी - पेपर क्र.२

महाराष्ट्र अभियांत्रिकी सेवा (स्थापत्य), गट- ब (मुख्य) परीक्ष -२०१२ वास्पर्धा परीक्षेच्या प्रश्नपत्रि ची उत्तर गांगक उमेदवारांच्या माहितीसाठी संकेतस्थळावर प्रसिध्द करण्यात आली होती. त्यासंदर्भात उमेदवारांनी अधिप्रमाणित (Authentic) स्पष्टीकरण / संदर्भ देऊन पाठविलेली लेखी निवेदने, तसेच तज्जांचे अभिप्राय विचारात घेऊन आयोगाने उत्तरतालिका सुधारित केली आहे. या उत्तरतालिकाल उत्तरे अंतिम समजण्यात येतील. यासंदर्भात आलेली निवेदने विचारात घेतली जाणार नाहीत व त्याबाबत कोणताही पञ्चवहार केला जाणार नाही, याची कृपया नोंद घ्यावी.

उत्तरतालिका

				त्तरत॥
प्रश्न	उत्तरे			
क्रमांक	संचA	संच B	संच C	संच D
1	4	3	2	3
2	3	2	1	3
3	2	3	3	4
4	1	2	3	3
5	3	4	4	2
6	3	2	3	1
7	3	3	3	2
8	2	4	2	3
9	3	3	4	3
10	2	2	2	2
11	4	1	3	3
12	2	3	3	2
13	3	3	2	4
14	1	3	4	3
15	4	4	2	3
16	1	1	1	3
17	4	3	4	4
18	2	3	1	1
19	3	1	3	4
20	4	4	3	2
21	1	1	3	1
22	3	4	4	4
23	3	2	1	1
24	3	2	2	3
25	1	2	4	2

प्रश्न	उत्तरे				
क्रमाक क्रमाक	संचA	संच B	संच C	संच D	
26	3	2	2	3	
27	2	4	2	3	
28	3	2	2	1	
29	2	3	3	4	
30	2	1	2	2	
31	2	3	3	2	
32	4	2	3	2	
33	2	3	1	2	
34	4	4	3	1	
35	1	1	2	3	
36	3	3	4	4	
37	4	2	1	1	
38	1	4	1	3	
39	3	1	3	4	
40	4	3	4	2	
41	1	4	1	4	
42	3	1	3	1	
43	2	3	4	3	
44	4	2	3	3	
45	4	1	3	4	
46	2	1	2	4	
47	2	3	1	4	
48	1	3	1	2	
49	3	4	3	2	
50	4	4	4	1	

date - $18^{\rm th}$ January, 2013

(प्रश्नपत्रिका क्र. ३)

प्रश्न	उत्तरे				
क्रमांक क्रमांक	संच A	संच B	संच С	संच D	
51	2	2	4	3	
52	1	2	4	2	
53	1	1	2	1	
54	3	3	2	1	
55	3	4	1	3	
56	2	1	3	4	
57	4	2	2	4	
58	1	3	2	1	
59	2	4	4	1	
60	2	4	1	2	
61	3	1	2	3	
62	2	2	2	4	
63	1	4	4	1	
64	2	1	1	2	
65	3	2	1	2	
66	4	2	2	3	
67	4	3	3	2	
68	1	2	4	2	
69	2	1	2	4	
70	4	1	4	2	
71	4	3	1	2	
72	2	4	1	4	
73	4	2	3	4	
74	2	4	4	2	
75	1	2	2	2	

प्रश्न	उत्तरे			
क्रमांक	संच A	संच B	संच C	संच D
76	1	4	4	4
77	3	4	2	1
78	4	2	2	1
79	2	4	4	3
80	4	2	4	4
81	4	2	4	3
82	2	2	4	4
83	2	4	1	2
84	4	4	4	4
85	4	1	3	2
86	1	4	4	2
87	4	3	2	4
88	3	4	4	4
89	4	2	2	1
90	2	4	2	4
91	3	1	1	1
92	3	3	2	3
93	3	4	3	1
94	1	1	3	3
95	2	3	3	4
96	1	3	1	1
97	3	3	3	2
98	4	3	1	3
99	1	1	3	3
100	3	2	4	3 matty 2013